

ABB
 Section 11
 Solid State Relays

Solid State Relays	

PHS Series	
$\sqrt{5}=$	-PHS)
5°	

DIN Rail Mounting Solid State Relays

■ SIR1 - Random Switching for Inductive Loads

- SIR2 - Zero Voltage Switching for Resistive \& Incandescent Loads
- Normally Open or Normally Closed Output
■ 3 ... 20 A with up to 200 A Inrush
- Encapsulated Circuitry
- Optically Isolated Output
$■ 0.25 \mathrm{in}$. $(6.35 \mathrm{~mm})$ Terminals with Single Hole Mounting

Approvals:

See accessory pages for specifications.

Quick connect to
screw adaptor
P/N: P1015-18
Female quick connect P/Ns: P1015-13 (AWG 10/12) P1015-64 (AWG 14/16) P1015-14 (AWG 18/22)

Description

Designed for industrial applications requiring rugged reliable operation. Provides an optically isolated high capacity solid state output, with power switching capability up to 20 A steady state, 200 A inrush. Zero voltage switching SIR2 extends the life of an incandescent lamp up to 10 times. Random switching SIR1 is ideal for inductive loads. When fully insulated female terminals are used on the connection wires, the system meets the requirements for touch-proof connections.

Operation

The solid state output is located between terminals 1 and 3 , and is normally open or normally closed without control voltage applied to terminals 4 and 5 . When control voltage is applied to terminals 4 and 5 , the solid state output opens or closes respectively.
Reset: Removing control voltage resets the output. The unit is also reset if output voltage is removed.

Connection

Note: Normally open output is shown. Normally closed output is also available.

Dashed lines are internal connections. Load may be connected to terminal 3 or 1.

$$
\text { L = Load } \quad \text { CV = Control Voltage }
$$

Ordering Table

Example P/N: SIR1A10A6, SIR2B10B6

Function

Isolated

SIR1/SIR2 Series
Solid State Relay

Technical Data				
Output				
Type	Optical isolation, totally solid state			
Form	SPST, normally open or normally closed			
Voltage	24, 120, or 230 V AC			
Tolerance	+/-20\%			
Ratings	Steady State	Inrush*		*Must be bolted to a metal surface
	3 A	30 A	Triac	using the included heat sink
	6 A	60 A	Triac	compound. The maximum mounting
	10 A	100 A	Triac	surface temperature is $90^{\circ} \mathrm{C}$. Inrush:
	20 A	200 A	Triac	Non-repetitive for 16 ms .
Minimum Load Current	$\cong 50 \mathrm{~mA}$			
Voltage Drop	$\cong 2.0 \mathrm{~V}$ at rated current			
Leakage Current (Open State)	$\cong 6 \mathrm{~mA}$			
Input				
Type	Optical isolation LED/photo transistor			
Control Voltage	9 ... 290 V AC/DC in 3 Ranges			
Power Consumption	$\leq 0.5 \mathrm{~W}$			
Protection	Encapsulated			
Circuitry				
Dielectric Breakdown	≥ 2000 V RMS terminals to mounting surface			
Insulation Resistance	$\geq 100 \mathrm{M} \Omega$			
Mechanical				
Mounting*	Surface mount with one \#10 (M5 $\times 0.8$) screw			
Package	$2 \times 2 \times 1.51 \mathrm{in}$. ($50.8 \times 50.8 \times 38.4 \mathrm{~mm}$)			
Termination	0.25 in . (6.35 mm) male quick connect terminals			
Environmental				
Operating Temperature	$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$			
Storage Temperature	$-40^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$			
Humidity	95\% relative, non-condensing			
Weight	$\cong 3.9 \mathrm{oz}(111 \mathrm{~g})$			

Notes

These pages are intentionally left blank.

Non Isolated

SLR1/SLR2 Series

Solid State Relay

■ SLR1 - Random Switching for Inductive Loads
\square SLR2 - Zero Voltage Switching for Resistive \& Incandescent Loads

- Normally Open or Normally Closed Output
- 1 ... 20 A with up to 200 A Inrush
■ 0.25 in . $(6.35 \mathrm{~mm})$ Termination with Single Hole Mounting
- Noiseless Switching,

Reliability, and Long Life
Approvals: © (1)

Operation

The solid state output is located between terminals 1 and 2 and can be ordered as either normally open or normally closed, when voltage is applied and S1 is open. When S1 is closed, the solid state output between terminals 1 and 2 closes (or opens). If S1 is opened, the solid state output will open (or close).
Reset: Opening S1 resets the output to its original state. Reset is also accomplished by removing input voltage.

Function

$\mathrm{V}=$ Voltage $\mathrm{S} 1=$ Initiate Switch $\mathrm{R}=$ Reset
NO = Normally Open Output NC = Normally Closed Output
-

Connection

Note: Normally open output is shown. Normally closed output is also available.

Dashed lines are internal connections.

$$
L=\text { Load } \quad S 1=\text { Initiate Switch }
$$

Ordering Table

X	X	X	X
Series	Voltage	Rating	Form
- SLR1	-2-24 V AC	-1A	-A - Normally Open
(Random Switching)	-4-120 V AC	-6A	-B - Normally Closed
- SLR2	-6-230 V AC	-10 A	
(Zero Voltage Switching)		-20 A	

Non Isolated
SLR1/SLR2 Series
Solid State Relay
Technical Data
Output (Contact)
Type
Form
Voltage
Tolerance
Ratings

Minimum Load Current
Voltage Drop (at Rated Current)
Leakage Current (Open State)
Initiate Switch Voltage
Power Consumption
Protection
Circuitry
Dielectric Breakdown
Insulation Resistance
Mechanical
Mounting*
Termination
Environmental
Operating Temperature
Storage Temperature
Humidity
Weight

Non-isolated solid state

SPST, normally open or normally closed
24, 120, or 230 V AC

+/-20\%

| Steady State | Inrush* | Output Device
 1 A | 10 A |
| :---: | :---: | :---: | :--- | SCR \& Bridge Rectifier | *Must be bolted to a metal surface |
| :--- |
| 6 A |

$\cong 50 \mathrm{~mA}$
$\cong 2.0 \mathrm{~V}-6,10, \& 20 \mathrm{~A}$ units; $\cong 2.5 \mathrm{~V}-1 \mathrm{~A}$ units
$\leq 5 \mathrm{~mA}$
Same as the output voltage
$\leq 0.5 \mathrm{~W}$
Encapsulated
≥ 2000 V RMS terminals to mounting surface
$\geq 100 \mathrm{M} \Omega$
Surface mount with one \#10 (M5 x 0.8) screw
0.25 in . (6.35 mm) male quick connect terminals

```
-20}\mp@subsup{}{}{\circ}\textrm{C}...+6\mp@subsup{0}{}{\circ}\textrm{C
-40}\mp@subsup{}{}{\circ}\textrm{C}\ldots..+8\mp@subsup{5}{}{\circ}\textrm{C
95% relative, non-condensing
\cong3.9 oz (111 g)
```


Mechanical View

Inches (Millimeters)

Impulse Latching Relay
NLF1/NLF2 Series
Solid State Relay

- Totally Solid State Latching

Relay--Encapsulated

- Non-Isolation to Reduce Cost
- 1 ... 20 A with 200 A Inrush
- 24,120 , or 230 V AC Input Voltages
- NLF1--Random Switching for Inductive Loads
- NLF2--Zero Voltage Switching for Lamp and Resistive Loads

Accessories

Quick connect to
screw adaptor
$\mathrm{P} / \mathrm{N}: ~ P 1015-18$

See accessory pages for specifications.

Description

The NLF1 and NLF2 provide a Flip-Flop latching function. Each time the control switch is closed, the solid state output changes state and latches. The NLF Series has no isolation between the control switch and the solid state output, which lowers cost and reduces the number of connections required. For use where the control switch is the same voltage source as the load. Zero voltage switching NLF2 extends the life of an incandescent lamp up to 10 times. Random switching NLF1 is ideal for inductive loads. When accessory fully insulated female terminals are used on the connection wires, the system meets the requirements for touch-proof connections.

Operation

The solid state output is located between terminals 1 and 2 , and can be ordered as either normally open or normally closed, when voltage is applied. When S1 is closed, the solid state output between terminals 1 and 2 closes (or opens). If S1 is opened and reclosed, the solid state output will open (or close).
Reset: Open and reclose S1. Reset is also accomplished by removing and reapplying input voltage.

Function

Connection

Internal connection between terminals $2 \& 4$.
Dashed lines are internal connections.

$$
\text { L = Load } \quad \text { S1 = Control Switch }
$$

Ordering Table

X	X	X	X
Series	Input	Output Rating	Output Form
- NLF1	-2-24 V AC	-1A	-A - Normally Open
(Random Switching)	-4-120 V AC	-6A	-B - Normally Closed
- NLF2	-6-230 V AC	-10 A	
(Zero Voltage Switching)		-20 A	

Mechanical View

Phase Control

PHS Series
AC Phase Control

- External Adjustment 230 V AC Rated Potentiometer
- 120 or 230 V AC Input Voltages Available ■ Up to 20 A Steady State 200 A Inrush
■ Single Hole Surface Mounting
Approvals:
게 (1)

Accessories

Female quick connect
P/Ns:
P1015-13 (AWG 10/12) P1015-64 (AWG 14/16) P1015-14 (AWG 18/22)

Quick connect to screw adaptor P/N: P1015-18

Versa-knob P/N: P0700-7

See accessory pages for specifications.

Description

The PHS Series is an ideal method of changing lamp intensity, varying the speed of a fan/motor, or controlling the temperature of a heater. The effective output voltage is adjusted with an accessory external potentiometer suitable for line voltage applications.

Operation

Upon application of input voltage, effective output voltage can be varied by changing the external resistance value. As the external resistance increases, the effective output voltage decreases. The inverse is also true.

Typical Output Waveform

Connection

Triac Output Device
$\mathrm{V}=$ Voltage $\mathrm{L}=$ Load $\mathrm{R}_{\mathrm{T}}=$ External Adjustment Dashed lines are internal connections.

Ordering Table

PHS	X	X
Series	Input	Rating
	-120A - 120 V AC	-1 A
	-230A - 230 V AC	-6 A
		-10 A

Example P/N: PHS120A10, PHS230A6

Phase Control

PHS Series
AC Phase Control
Technical Data

Output
Type
Rating

Minimum Load Current

Voltage Drop
Input
Voltage
Tolerance
Frequency
Protection
Dielectric Breakdown
Insulation Resistance
Mechanical
Mounting *
Termination
Environmental
Operating / Storage Temperature
Humidity
Weight
External Adjustment Potentiometer
120 V AC
230 V AC

Variable voltage phase angle control		
Steady State (at 100\% On)	Inrush	
1 A	10 A	*Units rated ≥ 6 A must be bolted to a
6 A	60 A	metal surface using the included heat
10 A	100 A	sink compound. The maximum mounting
20 A	200 A	surface temperature is $90^{\circ} \mathrm{C}$. Inrush:
100 mA	Non-repetitive for 16 ms.	
$\cong 2.0 \mathrm{~V}$ at rated current		

120 or 230 V AC
+/-20\%
50 ... 60 Hz
$\geq 2000 \mathrm{~V}$ RMS terminals to mounting surface
$\geq 100 \mathrm{M} \Omega$
Surface mount with one \#10 (M5 x 0.8) screw
0.25 in . (6.35 mm) male quick connect terminals
$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
95\% relative, non-condensing
$1 \mathrm{~A}: \cong 2.4 \mathrm{oz}(68 \mathrm{~g})$
$6,10, \& 20 \mathrm{~A}: \cong 3.9 \mathrm{oz}(111 \mathrm{~g})$
$100 \mathrm{~K} \Omega$ rated at 1 W
$200 \mathrm{~K} \Omega$ rated at 2 W
Must have insulation resistance suitable for line voltage applications

A durable conductive plastic potentiometer. Recommended for use with the PHS Series. It is designed to withstand high temperature and harsh environments. The shaft is slotted for screwdriver adjustment and can be panel mounted.

- Resistance values 100 K and $200 \mathrm{~K}+/-10 \%$
- Rated Wattage at $70^{\circ} \mathrm{C}$
- Linear taper
- Shaft rotation: $312^{\circ}+/-3^{\circ}$
(effective rotation $275^{\circ}+/-5^{\circ}$)

Inches (Millimeters)

Notes

