IEC Technical data

A/AF145 - AF750

Connecting Characteristics

| Contactor types: \quad AF... | | 1350 | 1650 |
| :--- | :--- | :--- | :--- | :--- |
| Main terminals | | | |
| Flat type | | | |

Auxiliary conductors (coil terminals)		
Rigid solid	\square	$1 \mathrm{xmm}{ }^{2}$
	\square	$2 \times \mathrm{mm}{ }^{2}$
Flexible with cable end		$1 \times \mathrm{mm}^{2}$
		$2 \times \mathrm{mm}{ }^{2}$
Lugs		L mm \leq

Consult
factory

Degree of protection acc. to IEC 60947-1 / EN 60947-1 and IEC 60529 / EN 60529

- Main terminals
- Coil terminals
- Built-in auxiliary terminals

Screw terminals
Main terminals
Coil terminals (delivered in open position)
Built-in auxiliary terminals
Tightening torque
Main pole terminals

- recommended	$\mathrm{Nm} / \mathrm{lb} . \mathrm{in}$
- max.	Nm
Coil terminals	
- recommended	$\mathrm{Nm} / \mathrm{lb} . \mathrm{in}$
- max.	Nm
Built-in auxiliary terminals	
- recommended	$\mathrm{Nm} / \mathrm{lb} . \mathrm{in}$
- max.	Nm
Terminal marking and positioning	

\qquad

UL/CSA \& IEC Technical data

AL9 - AL40

IEC Technical data
AL9 - AL40

Main Pole - Utilization Characteristics						
Contactor types: AL	AL9	AL12	AL16	AL26	AL30	AL40
Rated operational voltage U_{e} max. V Rated frequency limits Hz	690		25-40			
Conventional free-air thermal current $\mathrm{I}_{\text {th }}$ acc. to IEC 60947-4-1, open contactors $\varnothing \leq 40^{\circ} \mathrm{C}$ with conductor cross-sectional areamm ${ }^{2}$	$\begin{gathered} 26 \\ 4 \end{gathered}$	$\begin{aligned} & 28 \\ & 4 \end{aligned}$	$\begin{aligned} & 30 \\ & 6 \end{aligned}$	$\begin{aligned} & 45 \\ & 16 \end{aligned}$	$\begin{aligned} & 65 \\ & 16 \end{aligned}$	$\begin{aligned} & 65 \\ & 35 \end{aligned}$
Rated operational current $\mathrm{I}_{\mathrm{e}} /$ AC-1 for air temperature close to contactor $U_{e} \max .690 \mathrm{~V} \quad\left\{\begin{array}{lll} \rho \leq 40^{\circ} \mathrm{C} & \mathrm{~A} \\ \varnothing \leq 55^{\circ} \mathrm{C} & & \mathrm{~A} \\ \varnothing \leq 70^{\circ} \mathrm{C} & \text { (3) } & \mathrm{A} \end{array}\right.$ with conductor cross-sectional area mm^{2}	$\begin{aligned} & 25 \\ & 22 \\ & 18 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 27 \\ & 25 \\ & 20 \\ & 4 \end{aligned}$	$\begin{aligned} & 30 \\ & 27 \\ & 23 \\ & 4 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \\ & 32 \\ & 6 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 39 \\ & 10 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 42 \\ & 16 \end{aligned}$
Utilization categorie AC-3 for air temperature close to contactor $\leq 55^{\circ} \mathrm{C}$ Rated operational current $I_{\text {e }}$ AC-3 (1)	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \\ & 7 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 9 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 16 \\ & 14 \\ & 10 \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \\ & 26 \\ & 26 \\ & 22 \\ & 17 \end{aligned}$	$\begin{aligned} & 33 \\ & 32 \\ & 32 \\ & 32 \\ & 28 \\ & 21 \end{aligned}$	$\begin{aligned} & 40 \\ & 37 \\ & 37 \\ & 37 \\ & 33 \\ & 25 \end{aligned}$
Rated operational power AC-3 (1) 1500 r.p.m. 50 Hz $220-230-240 \mathrm{~V}$ kW 1800 r.p.m. 60 Hz $380-400 \mathrm{~V}$ kW 3-phase motors 415 V kW 440 V kW M 500 V kW 690 V kW 1000 V kW	$\begin{gathered} 2.2 \\ 4 \\ 4 \\ 4 \\ 5.5 \\ 5.5 \end{gathered}$	$\begin{aligned} & 3 \\ & 5.5 \\ & 5.5 \\ & 5.5 \\ & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 7.5 \\ & 9 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 11 \\ & 11 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 9 \\ & 15 \\ & 15 \\ & 18.5 \\ & 18.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 18.5 \\ & 18.5 \\ & 22 \\ & 22 \\ & 22 \end{aligned}$
Rated making capacity AC-3 according to IEC 60947-4-1	10 x					
Rated breaking capacity AC-3 according to IEC 60947-4-1	8 x					
Short-circuit protection for contactors without thermal O/L relay - Motor protection excludı $\mathrm{U}_{\mathrm{e}} \leq 500 \mathrm{~V}$ a.c. - gG type fuse	25	32	32	50	63	
Rated short-time withstand current I_{cw} at $40^{\circ} \mathrm{C}$ ambient temp., in free air, from a cold state	$\begin{aligned} & 250 \\ & 100 \\ & 60 \\ & 50 \\ & 26 \end{aligned}$	$\begin{aligned} & 280 \\ & 120 \\ & 70 \\ & 55 \\ & 28 \end{aligned}$	$\begin{aligned} & 300 \\ & 140 \\ & 80 \\ & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 400 \\ & 210 \\ & 110 \\ & 90 \\ & 45 \end{aligned}$	$\begin{aligned} & 600 \\ & 400 \\ & 225 \\ & 150 \\ & 65 \end{aligned}$	
Maximum breaking capacity $\begin{aligned} \cos \theta=0.45\left(\cos \theta=0.35 \text { for } I_{\mathrm{e}}>100 \mathrm{~A}\right) & \\ & \text { at } 440 \mathrm{~V} \\ & \text { at } 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 250 \\ & 90 \end{aligned}$			$\begin{aligned} & 420 \\ & 170 \end{aligned}$	$\begin{aligned} & 820 \\ & 340 \end{aligned}$	
Heat dissipation per pole $\mathrm{I}_{\mathrm{e}} /$ AC-1 W $\mathrm{I}_{\mathrm{e}} /$ AC-3 W	$\begin{aligned} & 0.8 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \hline 1.2 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.9 \end{aligned}$	
Max. electrical switching frequency - for AC-1 cycles/h - for AC-3 cycles/h - for AC-2, AC-4 cycles $/ \mathrm{h}$	$\begin{aligned} & 600 \\ & 1200 \\ & 300 \\ & \hline \end{aligned}$					
Mechanical durability - millions of operating cycles - max. mechanical switching frequency cycles/h	10 3600					

Magnet system characteristics for AL contactors

Magnet System Characteristics for TAL... Contactors							
Contactor types: TAL		TAL9	TAL12	TAL16	TAL26	TAL30	TAL40
Rated control circuit voltage U_{c} V d.c. 9 ... 264							
Coil operating limits according to IEC 60947-4-1		$\begin{aligned} & 0 \leq 55^{\circ} \mathrm{C} \\ & 0.85 \ldots 1.1 \times \mathrm{U}_{\mathrm{c}} \end{aligned}$					
Drop-out voltage in \% of U_{c} max.		roughly 20... 35%					
Coil consumption values for U_{c} max. and $20^{\circ} \mathrm{C}$ - Uc max. DC - Uc min. DC - Uc DC	$\begin{aligned} & w \\ & w \\ & w \end{aligned}$	$\begin{aligned} & 8.5 \\ & 2.5 \\ & 5 \end{aligned}$			9 2.7 5.4		
Operating time between coil energization and: - N.O. contact closing - N.C. contact opening between coil de-energization and - N.O. contact opening - N.C. contact closing	ms ms ms ms	$\begin{aligned} & 50 \ldots 100 \\ & 20 \ldots 70 \\ & 10 \ldots 17 \text { (1) } \\ & 16 \ldots 27 \end{aligned}$			55 25 12 18		

[^0]
Built-in Auxiliary Contacts - Utilization Characteristics

Mounting characteristics

Contactor types: AL	AL9	AL12	AL16	AL26	AL30	AL40
Mounting positions	see "Conditions for use"					
Mounting distances	The contactors can be assembled side by side					
Mounting on DIN rail according to IEC 715 and EN 50022 / EN 50023	$\begin{aligned} & 35 \times 7.5 \mathrm{~mm} \\ & 35 \times 15 \mathrm{~mm} \end{aligned}$					
by screws (not supplied)	$2 \times \mathrm{M} 4$					

Conditions for Use

Sustainable utilization conditions for contactors involving at the same time the Mounting position, Ambient temperature and Control voltage operating limits are summarized in the table below.

Contactors	Mounting position	Ambient temperature	Control voltage
AL9 - AL40	${ }_{5}^{1} 5^{1} \pm . .30^{\circ}{ }^{\circ} \mathrm{C}^{2,3,4,5}$	$\begin{aligned} & \leq 55^{\circ} \mathrm{C} \\ & U_{c} \end{aligned}$	$0.85 \ldots 1.1 \times \mathrm{U}_{\text {c }}$
	6 (Unauthorized)		

Mounting Positions (see the above table for authorized positions)

Connecting Characteristics

Contactor types: AL Main terminals	AL9	AL12	AL16	AL26	AL30	AL40
	with	clamp			with conne $2 \times(5$	ble or $6.5 \mathrm{~mm})$
Connecting capacity (min. ... max.) Main conductors (poles)						
$\left.\begin{array}{l}\text { Rigid: solid }\left(\leq 4 \mathrm{~mm}^{2}\right) \\ \text { stranded }\left(\geq 6 \mathrm{~mm}^{2}\right)\end{array}\right\}=\begin{aligned} & \square \mathrm{xmm}^{2} \\ & \square\end{aligned} \mathrm{mmm}^{2}$	$\begin{aligned} & 1 \ldots 4 \\ & 1 \ldots 4 \end{aligned}$			$\begin{aligned} & 1.5 \ldots 6 \\ & 1.5 \ldots 6 \end{aligned}$	$\begin{aligned} & 2.5 \ldots \\ & 2.5 \ldots \end{aligned}$	
Rigid with connector single for Cu cable single for AI/Cu cable double for Al/Cu cable $=$ $=$ mm^{2} $\mathrm{~mm}^{2}$ $\mathrm{~mm}^{2}$	-	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$		$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	-
Flexible with cable endП $1 \times \mathrm{mm}^{2}$ $2 \times \mathrm{mm}^{2}$	$\begin{aligned} & 0.75 \\ & 0.75 \end{aligned}$			$\begin{aligned} & 0.75 \ldots 4 \\ & 0.75 . . .4 \end{aligned}$	$\begin{aligned} & 2.5 \ldots \\ & 2.5 \ldots \end{aligned}$	
Bars or lugs \quad TDC	$\begin{aligned} & \hline 8 \\ & 3.7 \end{aligned}$			$\begin{aligned} & \hline 10 \\ & 4.2 \end{aligned}$	-	-
Auxiliary conductors (built-in auxiliary terminals + coil terminals)						
$\begin{array}{lll}\text { Rigid solid } & \sqsupseteq & \left.\begin{array}{ll}1 \times \mathrm{mm}^{2} \\ & \\ & 2 \times \mathrm{mm}^{2}\end{array}\right)\end{array}$	$\begin{aligned} & 1 \ldots 4 \\ & 1 \ldots 4 \end{aligned}$					
	$\begin{aligned} & \hline 0.75 \\ & 0.75 \end{aligned}$					
	$\begin{aligned} & \hline 8 \\ & 3.7 \end{aligned}$			$\begin{aligned} & \text { (1) } \\ & (1) \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 3.7 \end{aligned}$	
Degree of protection acc. to IEC 60947-1 / EN 60947-1 and IEC 60529 / EN 60529 - Main terminals - Coil terminals - Built-in auxiliary terminals	Prote IP 20 IP 20 IP 20	agains	direct	act acc.	to VDE	$106-\mathrm{P}$
Screw terminals Main terminals	(delivered in open position, screws of unused terminals must be tightened) (+,-) pozidriv 2 screws					
	M3.5 (+,-) pozidriv 2 screws with cable clamp					
Built-in auxiliary terminals	(+,-) pozidriv 2 screws with cable clamp					
Tightening torque Main pole terminals - recommended Nm / lb.in - max.	$\begin{aligned} & 1.00 \\ & 1.20 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.7 / 15 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 2.30 \\ & 2.60 \end{aligned}$	
Coil terminals - recommended $\mathrm{Nm} / \mathrm{lb}$. in - max. Nm	$\begin{aligned} & 1.00 \\ & 1.20 \end{aligned}$					
Built-in auxiliary terminals - recommended $\mathrm{Nm} / \mathrm{Ib} . \mathrm{in}$ - max. Nm	1.00 1.20			$\begin{aligned} & 1.7 / 15 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.20 \end{aligned}$	
Terminal marking and positioning	see pages 1.35					

[^1](2) With LW 110 enlargement piece. See page 1.31.

IEC Technical data

EK100 - EK1000

General Technical Data

Main Pole - Utilization Characteristics

Contactor types: EK...	110	150	175	210	370	550	1000
Rated operational voltage U_{e} max. V	1000						690
Rated frequency limits Hz	25 ...						
Conventional free-air thermal current $\mathrm{I}_{\text {th }}$ acc. to IEC 60947-4-1, $\begin{array}{lr}\text { open contactors } \varnothing \leq 40^{\circ} \mathrm{C} & \mathrm{A} \\ \text { with conductor cross-sectional area } & \mathrm{mm}^{2}\end{array}$	$\begin{aligned} & 200 \\ & 95 \end{aligned}$	$\begin{aligned} & 250 \\ & 150 \end{aligned}$	$\begin{aligned} & 300 \\ & 185 \end{aligned}$	$\begin{aligned} & 350 \\ & 240 \end{aligned}$	$\begin{aligned} & 550 \\ & 2 \times 185 \end{aligned}$	$\begin{aligned} & 800 \\ & 2 \times 240 \end{aligned}$	$\begin{aligned} & 1000 \\ & 2 \times 300 \end{aligned}$
Rated operational current $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}$-1 for air temperature close to contactor 	$\begin{aligned} & 200 \\ & 180 \\ & 155 \\ & 95 \end{aligned}$	$\begin{aligned} & 250 \\ & 230 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 300 \\ & 270 \\ & 215 \\ & 185 \end{aligned}$	$\begin{aligned} & 350 \\ & 310 \\ & 250 \\ & 240 \end{aligned}$	$\begin{aligned} & 550 \\ & 470 \\ & 400 \\ & 2 \times 185 \end{aligned}$	$\begin{aligned} & 800 \\ & 650 \\ & 575 \\ & 2 \times 240 \end{aligned}$	$\begin{aligned} & 1000 \\ & 800 \\ & 720 \\ & 2 \times 300 \end{aligned}$
Utilization categorie AC-3 for air temperature close to contactor $\leq 55^{\circ} \mathrm{C}$ Rated operational current I_{e} AC-3	$\begin{aligned} & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 64 \end{aligned}$	$\begin{aligned} & 145 \\ & 145 \\ & 145 \\ & 145 \\ & 145 \\ & 120 \\ & 80 \end{aligned}$	$\begin{aligned} & 210 \\ & 210 \\ & 210 \\ & 210 \\ & 210 \\ & 210 \\ & 113 \end{aligned}$		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 370 \\ & 370 \\ & 370 \\ & 155 \end{aligned}$	$\begin{aligned} & 550 \\ & 550 \\ & 550 \\ & 550 \\ & 550 \\ & 550 \\ & 175 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$
Rated operational power AC-3 1500 r.p.m. 50 Hz $220-230-240 \mathrm{~V}$ kW 1800 r.p.m. 60 Hz $380-400 \mathrm{~V}$ kW 3-phase motors 415 V kW 440 V kW 500 V kW 690 V kW 1000 V kW	$\begin{aligned} & 30 \\ & 55 \\ & 55 \\ & 59 \\ & 75 \\ & 110 \\ & 90 \end{aligned}$	$\begin{aligned} & 45 \\ & 75 \\ & 75 \\ & 75 \\ & 90 \\ & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 59 \\ & 110 \\ & 110 \\ & 110 \\ & 132 \\ & 160 \\ & 160 \end{aligned}$		$\begin{aligned} & 110 \\ & 200 \\ & 220 \\ & 220 \\ & 250 \\ & 355 \\ & 220 \end{aligned}$	$\begin{aligned} & 160 \\ & 280 \\ & 315 \\ & 315 \\ & 400 \\ & 500 \\ & 250 \end{aligned}$	
Rated making capacity AC-3 according to IEC 60947-4-1	10×1						-
Rated breaking capacity AC-3 according to IEC 60947-4-1	$8 \times 1{ }_{\text {e }}$						-
Short-circuit protection for contactors without thermal O/L relay - Motor protection excluded $\mathrm{U}_{\mathrm{e}} \leq 500 \mathrm{~V}$ a.c. - gG type fuse	250		355		630	800	1000
Rated short-time withstand current I_{cw} at $40^{\circ} \mathrm{C}$ ambient temp., in free air, from a cold state	$\begin{aligned} & 1700 \\ & 900 \\ & 600 \\ & 450 \\ & 210 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1200 \\ & 700 \\ & 550 \\ & 250 \end{aligned}$	$\begin{aligned} & 2300 \\ & 1680 \\ & 1000 \\ & 800 \\ & 320 \end{aligned}$		$\begin{aligned} & 5500 \\ & 5300 \\ & 3700 \\ & 3000 \\ & 1000 \end{aligned}$		$\begin{aligned} & 6800 \\ & 6400 \\ & 4400 \\ & 3400 \\ & 1200 \end{aligned}$
Maximum breaking capacity $\begin{array}{rl} \cos \varnothing=0.45\left(\cos \varnothing=0.35 \text { for } \mathrm{I}_{\mathrm{e}}>100 \mathrm{~A}\right) & \\ \text { at } 440 \mathrm{~V} & \mathrm{~A} \\ \text { at } 690 \mathrm{~V} & \mathrm{~A} \end{array}$	$\begin{aligned} & 1400 \\ & 1100 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1200 \end{aligned}$	$\begin{aligned} & 2000 \\ & 1700 \end{aligned}$		$\begin{aligned} & 5000 \\ & 5000 \end{aligned}$	$\begin{aligned} & 5400 \\ & 5400 \end{aligned}$	-
Heat dissipation per pole $\mathrm{I}_{\mathrm{e}} /$ /AC-1 W $\mathrm{I}_{\mathrm{e}} /$ AC-3 W	$\begin{aligned} & \hline 10 \\ & 3 \end{aligned}$	$\begin{aligned} & 13 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 9 \end{aligned}$		$\begin{aligned} & \hline 40 \\ & 15 \end{aligned}$	$\begin{aligned} & 60 \\ & 25 \end{aligned}$	80
Max. electrical switching frequency - for AC-1 cycles $/ \mathrm{h}$ - for AC-3 cycles $/ \mathrm{h}$ - for AC-2, AC-4 cycles $/ \mathrm{h}$	$\begin{aligned} & 300 \\ & 300 \\ & 150 \end{aligned}$		120				300
Electrical durability	see p						
Mechanical durability - millions of operating cycles - max. mechanical switching frequency cycles/h	10 3600				5 3600		

EK110 - EK1000

Magnet System Characteristics for EK... Contactors - a.c. Operated								
Contactor types: EK...		110	150	175	210	370	550	1000
Rated control circuit voltage $\mathrm{U}_{\mathrm{c}}$$\text { - at } 50 \mathrm{~Hz}$$\text { - at } 60 \mathrm{~Hz}$		$24 . .500$				48 110		
Coil operating limits according to IEC 60947-4-1		$\begin{aligned} & 0 \leq 70^{\circ} \mathrm{C} \\ & 0.85 \ldots 1 . \end{aligned}$		$0 \leq 70{ }^{\circ} \mathrm{C}$				
Drop-out voltage in \% of U_{c}		roughly $45 . . .65$ \%						
Coil consumption								
Average pull-in value	VA			1100		3500		
	VA	900		1200		4000		
	VA/VA	500/500		630/630		3800		
Average holding value	VA/W	44/15		52/18		125/		
	VA/W	52/18		65/22		140/		
	VA/W	2.5/2.5		2.5/2.5		140/		
Operating time between coil energization and:								
- N.O. contact closing	ms	$20 . . .40$ (1)	... $50{ }^{2}$			30.		
- N.C. contact opening between coil de-energization and:	ms	$15 . . .351$... 45②			25.		
- N.O. contact opening	ms	7.5 ... 15	... 120			10.		
- N.C. contact closing	ms	10 ... 18 (1)	... 125			$13 .$.		

Magnet System Characteristics fc EK... Contactors - d.c. Operated

[^2]Mounting Characteristics

Contactor types:		110	150	175	210	370	550	1000
Mounting positions		see "Conditions for use"						
Fixing by screws (supplied)	$4 \times \mathrm{M} 6$				$4 \times \mathrm{M}$			

Conditions for Use

Sustainable utilization conditions for contactors involving at the same time the Mounting position, Ambient temperature and Control voltage operating limits are summarized in the table below.

Contactors	Mounting position	Ambient temperature	Control voltage
E110 \ldots EK210	$\frac{1,1 \pm 30^{\circ}, 3,4,5}{2,6 \text { unauthorized }}$	$\leq 70^{\circ} \mathrm{C}$	$0.85 \ldots 1.1 \times U_{c}$
E370 \ldots EK1000			
$1,1 \pm 30^{\circ}, 2,3,4,5$	$\leq 70^{\circ} \mathrm{C}$	$0.85 \ldots 1.1 \times U_{c}$	

Mounting Positions (see the above table for authorized positions)

IEC Technical data

EK110 - EK1000

Connecting Characteristics

IEC Technical data
 Contactor electrical durability and Utilization categories

General

Utilization categories determine the current making and breaking conditions relating to the characteristics of the loads to be controlled by the contactors. International standard IEC 60947-4-1 and European standard EN 60947-4-1 are the standards to be referred to.

If I_{c} is the current to be broken by the contactor and I_{e} the rated operational current normally drawn by the load, then:

- Categories AC-1 and AC-3: $I_{c}=I_{e}$
- Category AC-2: $\mathrm{I}_{\mathrm{c}}=2.5 \times \mathrm{I}_{\mathrm{e}}$
- Category AC-4: $I_{c}=6 \times I_{e}$

Generally speaking $\mathrm{I}_{\mathrm{c}}=\mathrm{mx} \mathrm{I}_{\mathrm{e}}$ where m is a multiple of the load operational current.
On pages 1.66-1.71, the curves corresponding to categories AC-1, AC-2, AC-3 and AC-4 represent the electrical durability variation of standard contactors in relation to the breaking current I_{c}.
Electrical durability is expressed in millions of operating cycles.
These curves have been plotted for $400 \mathrm{~V}-50 \mathrm{~Hz} 3$-phase currents but remain valid up to $690 \mathrm{~V}-40 \ldots 60 \mathrm{~Hz}$ provided that a check is carried out to make sure that at the operational voltage U_{e}, the current I_{e} normally drawn by the load does not exceed the value of the contactor rated operational current: I_{e} / AC-1 for category AC-1 and $I_{e} /$ AC-3 for categories AC-3 and AC-4. The values are given for each type of contactor in pages 1.44, 1.45, 1.54, and 1.61 (Technical Data).

Curve Utilization Mode

Electrical durability forecast and contactor selection for categories AC-1, AC-2, AC-3 or AC-4

- Note the characteristics of the load to be controlled:
- Operational voltage ..U
- Current normally drawn.. $\mathrm{I}_{\mathrm{e}} \quad\left(\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} / \mathrm{kW}\right.$ relation for motors, + page 0/0).
- Utilization category..AC-1, AC-2, AC-3 or AC-4
- Breaking current.
- Define the number of operating cycles N required.
- On the diagram corresponding to the operational category, select the contactor with the curve immediately above the intersection point $\left(I_{c} ; N\right)$.

Electrical durability forecast and contactor selection for mixed duty motor control: AC-3 $\left(I_{c}=I_{e}\right)$ type switching off while "motor running" and, occasionally, AC-4 $\left(I_{c}=6 \times I_{e}\right)$ type switching off while "motor accelerating".

- Note the characteristics of the motor to be controlled:

- Define the total number of operating cycles N required.
- Note the smallest contactor rating compatible for AC-3 $\left(U_{e} / I_{e}\right)$ on pages $2 / 62,2 / 63,2 / 73$, and 2/79.
- For the selected contactor make a note of the following in relation to the voltage using diagram AC-3 page $2 / 85$ and AC-4 page 2/86 or 2/87:
- The number of operating cycles
A for $I_{c}=I_{e}$ (AC-3)
- The number of operating cycles $B \quad$ forl $_{c}=6 \times I_{e}$
(AC-4)
- Calculate the estimated number of cycles N^{\prime} (N^{\prime} is always below A)

$$
\mathrm{N}^{\prime}=\frac{\mathrm{A}}{1+0.01 \mathrm{~K}(\mathrm{~A} / \mathrm{B}-1)}
$$

- If N ' is too low in relation to the target N , calculate the estimated number of cycles for a higher contactor rating.

Case of uninterrupted duty.

Among the different utilization categories, the uninterrupted duty implies the following remark. The combinated effect of environmental conditions and the proper temperature of the product may require some disposals. As a matter of fact, for this duty, the use duration prevails over the number of operating cycles. For long term service, some verifications of preventing maintenance are needed to check the functionality of the concerned product (consult us). Over a duration of five years, in these conditions the contactor might present high internal resistance. We recommend to change the contactor or change the contacts.

Electrical Durability for AC-1 Utilization Category. Ambient Temperature $\leq 55^{\circ} \mathrm{C}$
Switching non-inductive or slightly inductive loads. The breaking current I_{c} for $A C-1$ is equal to the rated operational current of the load.

Example:

I / AC-1 = 24 A - Electrical durability required $=2$ million operations.
Using the AC-1 curves above select the A 30 contactor at intersection " O " ($24 \mathrm{~A} / 2$ million operations).

IEC Technical data
A9 - AF750
Electrical durability

Switching cage motors: starting and switching off running motors. The breaking current I_{c} for $A C-3$ is equal to the rated operational current I_{e} ($I_{e}=$ motor full load current).

Electrical Durability for AC-3 Utilization Category - $\mathrm{U}_{\mathrm{e}} \leq 440 \mathrm{~V}$. Ambient Temperature $\leq 55^{\circ} \mathrm{C}$

Electrical Durability for AC-3 Utilization Category - $440 \mathrm{~V}<\mathrm{U}_{\mathrm{e}} \leq 690 \mathrm{~V}$. Ambient Temperature $\leq 55^{\circ} \mathrm{C}$
Millions of

Example:

Motor power 40 kW for AC-3 - $\mathrm{U}=400 \mathrm{~V}$ utilization - Electrical durability required $=1.5$ million operations
$40 \mathrm{~kW}, 400 \mathrm{~V}$ corresponds to $\mathrm{I}_{\mathrm{e}}=79 \mathrm{~A}$. For $\mathrm{AC}-3: \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{e}}$. Select the A 110 contactor at intersection " O " ($79 \mathrm{~A} / 1.5$ million operations) on the curves $\left(\mathrm{AC}-3-\mathrm{U}_{\mathrm{e}} \leq 440 \mathrm{~V}\right)$.

Electrical Durability for AC-2 or AC-4 Utilization Category - $U_{e} \leq 440 \mathrm{~V}$. Ambient Temperature $\leq 55^{\circ} \mathrm{C}$
Maximum number of AC-2 or AC-4 operations: 300 per hour for A 9 ... A 40 contactors,
150 per hour for A 50 ... A 300 contactors.
Switching cage motors: starting, reverse operation and step-by-step operation. The breaking current I_{c} is equal to $2.5 \times I_{e}$ for $A C-2$ and $6 \times I_{e}$ for AC-4, keeping in mind that I_{e} is the motor rated operational current $\left(\mathrm{I}_{\mathrm{e}}=\right.$ motor full-load current $)$.

Example:

Motor power 45 kW for AC-4- $\mathrm{U}_{\mathrm{e}}=400 \mathrm{~V}$ utilization - Electrical durability required $=0.2$ million operations.
$45 \mathrm{~kW}, 400 \mathrm{~V}$ corresponds to $\mathrm{I}_{\mathrm{e}}=85 \mathrm{~A}$.
For AC-4: $I_{c}=6 \times I_{e}=510 \mathrm{~A}-$ Select the A 260 contactor at intersection " O " ($510 \mathrm{~A} / 0.2$ million operations) on the curves ($\mathrm{AC}-4-\mathrm{U}_{\mathrm{e}} \leq 440 \mathrm{~V}$).

IEC Technical data

A9 - AF750
Electrical durability
Electrical Durability for AC-2 or AC-4 Utilization Category - $440 \mathrm{~V}<\mathrm{U}_{\mathrm{e}} \leq 690 \mathrm{~V}$. Ambient Temperature $\leq 55^{\circ} \mathrm{C}$ Maximum number of AC-2 or AC-4 operations: 300 per hour for A $9 \ldots$ A 40 contactors, 150 per hour for A 50 ... A 300 contactors.

Switching cage motors: starting, reverse operation and step-by-step operation. The breaking current I_{c} is equal to $2.5 \times I_{e}$ for AC- 2 and $6 \times I_{e}$ for AC-4, keeping in mind that I_{e} is the motor rated operational current $\left(I_{e}=\right.$ motor full-load current $)$.

Example:

Motor power 59 kW for $\mathrm{AC}-4-\mathrm{U}_{\mathrm{e}}=600 \mathrm{~V}$ utilization - Electrical durability required $=0.04$ million operations.
As stated on page 0/0: $59 \mathrm{~kW}, 600 \mathrm{~V}$ corresponds to $\mathrm{I}_{\mathrm{e}}=71.1 \mathrm{~A}$.
For AC-4: $\mathrm{I}_{\mathrm{c}}=6 \times \mathrm{I}_{\mathrm{e}}=426.6 \mathrm{~A}$ - Select the A 145 contactor at intersection " O " ($427 \mathrm{~A} / 0.04$ million operations) on the curves (AC-4-440 $\mathrm{V}<\mathrm{U}_{\mathrm{e}}^{\mathrm{e}} \leq 690 \mathrm{~V}$).

IEC Technical data

AL9 - AL40
Electrical durability

IEC Technical data

EK110 - EK1000
Electrical durability
Electrical Durability for AC-1 Utilization Category. Ambient Temperature $\leq 55^{\circ} \mathrm{C}$
Switching non-inductive or slightly inductive loads. The breaking current I_{c} for $\mathrm{AC}-1$ is equal to the rated operational current of the load.

Example:

$I_{c} / A C-1=240 \mathrm{~A}-$ Electrical durability required $=2$ million operations.
Using the AC-1 curves above select the EK 370 contactor at intersection " O " ($240 \mathrm{~A} / 2$ million operations).

1

IEC Technical data

Influence of the length of conductors

 used in contactor control circuitsUnder certain conditions the excessive length of the control circuit conductors may prevent the contactor from carrying out closing and opening orders.

- no closing: due to excessive voltage drop (in a.c. or d.c.).
- no opening: due to excessive capacitance (in a.c.).

Contactor Closing (contactor with a.c. or d.c. fed control circuit)

The voltage drop is due to the pull-in current (pull-in power) and to the resistance of the control circuit conductors.

The table and graph below can be used to determine the single length of line feeders (distance between the control device and the contactor coil) in relation to:
I the coil pull-in consumption.
I the supply voltage.
I the connecting wire cross-sectional area.
The graph has been drawn for a max. line voltage drop of 5%.
Coil pull-in consumption (average value)

Contactors	a.c. control circuit 50 Hz	Contactors	d.c. control circuit
A 9, 12, 16	70 VA	AE 9, 12, 16	90 W
A 26, 30, 40	120 VA	AE 26, 30, 40	110 W
A 45, 50, 63, 75	180 VA	AE 45, 50, 63, 75	200 W
A 95, 110	450 VA	AE 95, 110	400 W
A 145, 185	700 VA	BC 9, 16, 18, 25, 30	7 W
A 210, 260, 300	1700 VA		
AF 45, 50, 63, 75	210 VA	AF 45, 50, 63, 75	190 W
AF 95, 110	350 VA	AF 95, 110	400 W
AF 145,185	430 VA	AF 145,185	500 W
AF 210, 260, 300	470 VA	AF 210, 260, 300	520 W
AF 400, 460	890 VA	AF 400, 460	990 W
AF 580, 750	850 VA	AF 580, 750	950 W

Permissible single length for the control circuit conductors on contactor closing:
Depending on the coil pull-in power consumption on the supply voltage and on the control circuit conductor cross-sectional area.

Example:

A 9 contactor

Coil voltage: 230 V 50 Hz , contactor coil pull-in power consumption: 70 VA , control circuit conductor cross-sectional area: Cu $1.5 \mathrm{~mm}^{2}$.
Max. permissible length: $\mathbf{2 0 0 0} \mathbf{m}$.

IEC Technical data

Influence of the length of conductors used in contactor control circuits

Wiring diagram A
Via maintained pushbutton and 2-core cable (with a capacity of $0.2 \mu \mathrm{~F} / \mathrm{km}$, for example).

Single control line length

Wiring diagram B
Via momentary pushbutton plus hold-in contact and 3 -core cable (with a capacity of $2 \times 0.2=0.4 \mu \mathrm{~F} / \mathrm{km}$, for example).

Contactor Opening (contactor with a.c. fed control circuit)
Under certain conditions, an a.c. operated contactor does not open when the control circuit is de-energized.
This is due to a critical capacity of the excessively long control circuit line and the type of contactor coil control layout (see diagrams A and B opposite).
This may be caused by the following factors:

- high control voltage.
- low coil holding consumption.
- low contactor drop-out voltage (according to IEC 60947-4-1: 0.2 to $0.75 \times \mathrm{U}_{\mathrm{c}}$).

If lines longer than those indicated are required, the following measures must be taken:

- select a contactor with a higher rating.
- select a lower control voltage.
- connect " R_{p} " impedances in parallel with the contactor coil:
sizing of parallel resistor: $\mathrm{R}_{\mathrm{p}}=\frac{10^{3}}{\mathrm{C}}$ (with C in $\mu \mathrm{F}$)
The table and graph below can be used to determine the single length of line feeders (distance between the control device and the contactor coil) in relation to:
- the coil holding consumption VA.
- the supply voltage.
- the capacity in $\mu \mathrm{F} / \mathrm{km}$ (depending on the control layout).

Wiring diagrams A and B opposite show two supply and coil control wiring examples.
Coil holding consumption (average value)

Contactors	a.c. control circuit 50 Hz	Contactors	a.c. control circuit 50 Hz
A 9, 12, 16	8 VA	AF 45, 50, 63, 75	7 VA
A 26, 30, 40	12 VA	AF 95, 110,	7 VA
A 45, 50, 63, 75	18 VA	AF 145, 185,	12 VA
A 95, 110	22 VA	AF 210, 260, 300	10 VA
A 145, 185	35 VA	AF 400, 460	12 VA
A 210, 260, 300	60 VA	AF 580, 750	12 VA

Permissible single length for the control circuit conductors on contactor opening:
Depending on the coil holding power consumption, on the supply voltage and on the contr . circuit conductor capacity.

Examples:

A 16 contactor

Coil voltage $\mathbf{U}_{\mathbf{c}}=500 \mathrm{~V}, 50 \mathrm{~Hz}, 8 \mathrm{VA}$ contactor coil holding consumption, control type: diagram A, via maintained pushbutton, and 2-core cable with a capacity of $0.2 \mu \mathrm{~F} / \mathrm{km}$.
Max. permissible length: 60 m .

A 50 contactor

Coil voltage $\mathbf{U}_{\mathbf{c}}=230 \mathrm{~V}, 50 \mathrm{~Hz}$, 18 VA contactor coil holding consumption, control type: diagram B via momentary pushbutton, hold-in contact and 3-core cable with a capacity of $2 \times 0.2 \mu \mathrm{~F} / \mathrm{km}=0.4 \mu \mathrm{~F} / \mathrm{km}$.
Max. permissible length: 380 m .

IEC Technical data

Parallel connection of main poles

Parallel Connection of Main Poles

Purpose: Increasing the a.c. resistive load.
Remarks:

- Parallel connection of main poles to increase the d.c. resistive load is not acceptable.
- Parallel connection of main poles does'nt increase the breaking capacity.

Means: The poles can be connected in parallel via shorting bars. See page 1.30

- LP and LH for parallel connection of 2 poles,
- LY and LF for parallel connection of 3 poles,

The table below shows the uprating factor for $I_{e} /$ AC-1 max. in relation to the number of poles in parallel and for a max. switching frequency.

Contactors			Factor to be applied to the rated operational current $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}-1$ to obtain the permissible				
a.c. Operated	d.c. Operated	Cycles / h	current $\mathrm{I}_{\mathrm{e}} /$ AC-1 with				
3-pole contactors							
A 9 ... A 75	AF $50 \ldots$ AF 75						
AF $50 \ldots$ AF 75	AE..., TAE...	600	1.6	2.2	-		
	AL...	A $95 \ldots$ A 300	AF $145 \ldots$ AF 750	300	1.6	2.2	-
AF $145 \ldots$ AF 750							
4-pole contactors							
A 9 ... A 75	AF $45 \ldots$ AF 75						
AF 45 ... AF 75	AE..., TAE...	600	1.6	2.2	2.6		
	AL...	EK...	EK...	300	1.6	2.2	2.8

Factor to be applied to the rated operational current $I_{e} / A C-1$ to obtain the permissible

IEC Technical data

Temporary or intermittent duty

Utilization of Contactors for Temporary / Intermittent Duty
The table below shows the factor to be applied to the rated operational current $I_{e} / A C-1$ to obtain the permissible operational current $I_{e} / A C-1$ in relation to the switching frequency and the current flow time per cycle.

Operating cycles per hour	120	60	20	6	2	1
Current flow time per cycle in seconds.	Factor to be applied to the rated operational current $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}-1$ max. to obtain the permissible current $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}-1$ for temporary / intermittent duty.					
5	2.8	3.4	4	4.7	5	5.2
10	2.2	2.6	3	3.4	3.7	3.8
20	1.6	2	2.4	2.6	2.7	2.8
30	-	1.7	2.1	2.2	2.3	2.4
40	-	1.5	1.9	2.0	2.1	2.2
60	-	-	1.7	1.8	1.8	1.9

Example

A 9 contactor (intermittent duty, resistive load)
Rated operational current $\mathrm{I}_{\mathrm{e}} / \mathrm{AC}$-1 at $55^{\circ} \mathrm{C}$ (see page 1.42)
Switching frequency
Current flow time per cycle
Factor to be applied to the current $\mathrm{I}_{\mathrm{e}} /$ AC-1
Permissible current: $2.7 \times 22=$

22 A
2 operations/h
20 s
2.7

59 A

Altitude

Refers to the height of the site where the equipment is located, expressed in meters above the sea level.

Ambient temperature

Temperature of the air surrounding the unit.

Circuits

- Auxiliary circuit

All the conducting parts of a contactor, intended to be included in a circuit different from the main circuit and the control circuit of the contactor e.g. signalization, interlocking circuits etc ...

- Control circuit

All the conducting parts of a contactor (other than the main circuit) included in a circuit used for the closing operation, or opening operation, or both, of the contactor.

- Main circuit

All the conducting parts of a contactor included in the circuit which it is designed to close or open.

Coil operating range

Expressed as a multiple of the rated control circuit voltage Uc for the lower and upper limits.

Cycle duration

Total time of the on-load + off-load period.
Endurance / durability

- Electrical endurance

Number of on-load operating cycles (i.e. with current on the main contacts) a contactor can achieve, varies depending on the utilization category.

- Mechanical endurance

Number of off-load operating cycles (i.e. without current on the main contacts) a contactor can achieve.

Inching

Energizing a motor once or repeatedly for short periods to obtain small movements of the driven mechanism.

Insulation class according to the VDE 0110 and NFC 20-040
Characterizes contactors suitability in accordance with environment and utilization conditions. A contactor can be classified depending on its own clearance and creepage distances in the insulation classes A, B, C, D which correspond to different insulation voltage values.
The insulation class C is applicable to most of the industrial applications. Equipment described in this catalogue correspond to insulation class C.

Intermittent duty

Duty in which the main contacts of a contactor remain closed for periods of time insufficient to allow the contactor to reach thermal equilibrium, the current-carrying periods being separated by off-load periods of sufficient duration to restore equality of temperature with the cooling medium.

Mounting positions

Stated by the manufacturer. Please note restrictions when applicable.

On-load factor

Ratio of the current flow time to the total time of the cycle $\times 100$.
Plugging
Stopping or reversing a motor quickly by interchanging two supply leads whilst the motor is running.

Rated breaking capacity; Rated making capacity

Value of r.m.s current a contactor can break or make at a fixed voltage value, within the conditions specified by the standards, depending on the utilization category.

Rated control circuit voltage Uc

Control voltage value for which the control circuit of the unit is sized.
Rated insulation voltage U_{i}
Voltage value which designates the unit and to which dielectric tests, clearance and creepage distances are referred.

Rated impulse withstand voltage U
The highest peak value of an impulse voltage of prescribed form 1.2/50, which does not cause breakdown under specified conditions of test.
Rated operating current I.
Current value stated by the manufacturer and taking into account the rated operating voltage U_{e}, the rated frequency, the rated duty, the utilization category, the electrical contact life and the type of the protective enclosure.
Rated operating voltage U_{e}
Voltage value to which utilization characteristics of the contactor are referred, i.e. phase to phase voltage in 3 phase circuits.
Conventional thermal current $I_{\text {th }}$
Value of current the contactor can withstand with poles in closed position, in free air for an eight hour duty, without the temperature rise of its various parts exceeding the limits specified by the standards.

Resistance to shocks

Requirements applicable for instance to vehicles, crane operation or switchgear slide-in module systems.
At the quoted permissible "g» values, contactors must not undergo a change in switching state and O / L relays must not trip.

Resistance to vibrations

Requirements applicable to all the vehicles, vessels and other similar transport systems. At the quoted amplitude and vibration frequency values, the unit must be capable to achieve the required duty.

Short-circuit protection co-ordination

Achieved by using back-up protection devices such as circuit-breakers, H.R.C. fuses or standard fuses.
Co-ordination types a, b, c are defined in IEC 292-1 publication, VDE 0660, NFC 63-650 standards. Co-ordination types "1" and "2" are defined in IEC 947-4-1.

- Type 1 co-ordination

There has been no discharge of parts beyond the enclosure. Damage to the contactor and the overload relay is acceptable.

- Type 2 co-ordination

No damage to the overload relay or other parts has occured, except that welding of contactor or starter contacts is permitted, if they are easily separated.

Switching frequency

Number of operating cycles per hour.

Time

- Closing time

Time between energization of the coil until the moment the contacts of the first current path to be closed actually close.

- Opening time

Time from the beginning of state causing breaking until the moment when the contacts of the last current path to be opened are open.

- Minimal operation time

Shortest control duration to ensure complete closing or opening of a contactor.

- Short time current permissible

Value of current which the contactor can withstand in closed position for a short time period and within specified conditions.

- Time constant

Ratio of inductance to the resistance : $\mathrm{L} / \mathrm{R}=\mathrm{mH} / \mathrm{Ohm}=\mathrm{ms}$.

Standards

- IEC standards 158-1: "Contactors" and series IEC 292 :
"Motor-starters" have been revised and replaced by the new IEC 947-4-1 (1990-05): "Contactors and Motor-starters" referring to IEC 947-1 (1988): "General rules"
The new standards will constitute the basis of the future European and National standards, not yet revised.
Therefore the ratings indicated in this catalog are established according to the former and the future standards.
- Main changes and additions in the new standards are:
- Revision and extension of the utilization categories (see hereafter)
- Replacement of the coordination classes types a, b, c by new types: "1" (approximately equivalent to former class "a") and " 2 " (approximately equivalent to former class " c ") with additional requirements.
- Classification of the thermal overload relays in tripping classes: $10 \mathrm{~A} ; 10 ; 20$ and 30 depending on their tripping times, at 1.5 and 7.2 times their setting current, in order to cover motor applications depending on their starting times. Class 10 A is adapted for motors according to IEC 34-1.
- Introduction of tests to verify the connecting capability and the mechanical strength of terminals.

Utilization categories

A contactor duty is characterized by the utilization category plus indication of the rated operating voltage and the rated operating current (see at Rated ...), or the motor characteristics.

Utilization categories for contactors according to IEC 947-4-1

Alternating current:	AC-1	Non-inductive or slightly inductive loads, resistance furnaces. Power factor 0.7-0.8 (slightly inductive).
	AC-2	Slip-ring motors: starting, switching-off.
	AC-3	Squirrel-cage motors: starting, switching-off motors during running. Power factor 0.4-0.5 (AC-3).
	AC-4	Squirrel-cage motors: starting, plugging, inching.
	AC-5a	Switching of electric discharge lamp controls.
	AC-5b	Switching of incandescent lamps.
	AC-6a	Switching of transformers.
	AC-6b	Switching of capacitor banks
	AC-8a	Hermetic refrigerant compressor motor control with manual resetting of overload releases
	AC-8b	Hermetic refrigerant compressor motor control with automatic resetting of overload releases.
Direct current:	DC-1	Non-inductive or slightly inductive loads, resistance furnaces.
	DC-3	Shunt motors: starting, plugging, inching. Dynamic breaking of d.c. motors.
	DC-5	Series motors: starting, plugging, inching. Dynamic breaking of d.c. motors.
	DC-6	Switching of incandescent lamps

Utilization categories for contactor relays according to IEC 947-5-1

Alternating current:	AC-12	Control of resistive loads and solid state loads with isolation by opto couplers.
	AC-13	Control of solid state loads with transformer isolation.
	AC-14	Control of small electromagnetic loads (≤ 72 VA).
	AC-15	Control of electromagnetic loads (>72 VA).
Direct current:	DC-12	Control of resistive loads and solid state loads with isolation by opto couplers.
	DC-13	Control of electromagnets.
	DC-14	Control of electromagnetic loads having economy resistors in circuit.

Utilization categories AC-1, AC-2, AC-3, AC-4 and DC-1, DC-3, DC-5 are maintained with slightly more severe tests.
Other categories have been added in order to standardize specific applications. In fact some contactor applications and the specific criteria characterizing the types of load controlled can modify the recommended utilization characteristics. These major applications are, for example :

Switching of capacitor banks

This application is characterized by high current peaks when switching-on the contactor and presence of harmonic currents on uninterrupted duty. For this application, IEC 947-4-1 has defined an utilization category AC-6b. Practical ratings have to be defined according to tests or, in absence of tests, by a calculation indicated in IEC 947-4-1.

Switching of transformers

This application is characterized by high current peaks on contactor closing due to magnetization phenomena. The corresponding utilization category according to IEC 947-4-1 is AC-6a. Ratings are derived from test-values for AC-3 or AC-4 according to formula given in IEC 947-4-1.

Switching of lighting circuits

The current peaks on contactor closing and power factor vary depending on the type of lamps, the switching method used and if compensation systems are fitted or not.
IEC 947-4-1 contains two standard utilization categories
AC-5a for switching of the electric discharge lamps.
AC-5b for switching of incandescent lamp.

UL/CSA Technical data

Motor data

Ampere ratings of 3 phase, AC induction motors

	110-120V			200-208V			220-240V			380-415V ${ }^{(1)}$		440-480V			550-600V		
Horse power	Single phase	$\begin{gathered} \hline \text { Two } \\ \text { phase } \end{gathered}$	Three phase	Single phase	$\begin{gathered} \text { Two } \\ \text { phase } \end{gathered}$	Three phase	Single phase	Two phase	Three phase	Single phase	Three phase	Single phase	Two phase	Three phase	Single phase	$\begin{gathered} \hline \text { Two } \\ \text { phase } \end{gathered}$	Three phase
1/10	3.0	-	-	1.65	-	-	1.5	-	-	1.0	-	-	-	-	-	-	-
1/8	3.8	-	-	2.1	-	-	1.9	-	-	1.2	-	-	-	-	-	-	-
1/6	4.4	-	-	2.4	-	-	2.2	-	-	1.4	-	-	-	-	-	-	-
1/4	5.8	-	-	3.2	-	-	2.9	-	-	1.8	-	-	-	-	-	-	-
1/3	7.2	-	-	4.0	-	-	3.6	-	-	2.3	-	-	-	-	-	-	-
1/2	9.8	4.0	4.4	5.4	2.2	2.4	4.9	2.0	2.2	3.2	1.3	2.5	1.0	1.1	2.0	0.8	0.9
3/4	13.8	4.8	6.4	7.6	2.6	3.5	6.9	2.4	3.2	4.5	1.8	3.5	1.2	1.6	2.8	1.0	1.3
1	16.0	6.4	8.4	8.8	3.6	4.6	8.0	3.2	4.2	5.1	2.3	4.0	1.6	2.1	3.2	1.3	1.7
$11 / 2$	20.0	9.0	12.0	11.0	5.0	6.6	10.0	4.5	6.0	6.4	3.3	5.0	2.3	3.0	4.0	1.8	2.4
2	24.0	11.8	13.6	13.2	6.5	7.5	12.0	5.9	6.8	7.7	4.3	6.0	3.0	3.4	4.8	2.4	2.7
3	34.0	16.6	19.2	18.7	9.2	10.6	17.0	8.3	9.6	10.9	6.1	8.5	4.2	4.8	6.8	3.3	3.9
5	56.0	26.4	30.4	30.8	14.5	16.8	28.0	13.2	15.2	17.9	9.7	14.0	6.6	7.6	11.2	5.3	6.1
$71 / 2$	80.0	38.0	44.0	44.0	21.0	24.2	40.0	19.0	22.0	27.0	14.0	21.0	9.0	11.0	16.0	8.0	9.0
10	100.0	48.0	56.0	55.0	26.4	30.8	50.0	24.0	28.0	33.0	18.0	26.0	12.0	14.0.	20.0	10.0	11.0
15	135.0	72.0	84.0	75.0	39.6	46.2	68.0	36.0	42.0	44.0	27.0	34.0	18.0	21.0	27.0	14.0	17.0
20	-	94.0	108.0	96.8	52.0	60.0	88.0	47.0	54.0	56.0	34.0	44.0	23.0	27.0	35.0	19.0	22.0
25	-	118.0	136.0	121.0	65.0	75.0	110.0	59.0	68.0	70.0	44.0	55.0	29.0	34.0	44.0	24.0	27.0
30	-	138.0	160.0	150.0	76.0	88.0	136.0	69.0	80.0	87.0	51.0	68.0	35.0	40.0	54.0	28.0	32.0
40	-	180.0	208.0	194.0	100.0	115.0	176.0	90.0	104.0	112.0	66.0	88.0	45.0	52.0	70.0	36.0	41.0
50	-	226.0	260.0	238.0	125.0	143.0	216.0	113.0	130.0	139.0	83.0	108.0	56.0	65.0	86.0	45.0	52.0
60	-	-	-	-	147.0	160.0	-	133.0	154.0	-	103.0	-	67.0	77.0	-	53.0	62.0
75	-	-	-	-	183.0	212.0	-	166.0	192.0	-	128.0	-	83.0	96.0	-	66.0	77.0
100	-	-	-	-	240.0	273.0	-	218.0	248.0	-	165.0	-	109.0	124.0	-	87.0	99.0
125	-	-	-	-	-	344.0	-	-	312.0	-	208.0	-	135.0	156.0	-	108.0	125.0
150	-	-	-	-	-	396.0	-	-	360.0	-	240.0	-	156.0	180.0	-	125.0	144.0
200	-	-	-	-	-	528.0	-	-	480.0	-	320.0	-	208.0	240.0	-	167.0	192.0
250	-	-	-	-	-	663.0	-	-	602.0	-	403.0	-	-	302.0	-	-	242.0
300	-	-	-	-	-	-	-	-	-	-	482.0	-	-	361.0	-	-	289.0
350	-	-	-	-	-	-	-	-	-	-	560.0	-	-	414.0	-	-	336.0
400	-	-	-	-	-	-	-	-	-	-	636.0	-	-	477.0	-	-	382.0
500	-	-	-	-	-	-	-	-	-	-	786.0	-	-	590.0	-	-	472.0

[^3]
[^0]: (1) The use of surge suppressors increases the opening time on a scale of 1.1 to 1.5 for a varistor suppressor and on a scale of 4 to 8 for a diode suppressor.

[^1]: (1) $\mathrm{L} \leq 8$ and $\mathrm{I}>3.7$ for coil terminal $-\mathrm{L} \leq 10$ and $\mathrm{I}>4.2$ for built-in auxiliary terminals.

[^2]: (1) "A" coil voltage codes see page 1.29 .
 (2) $50 / 60 \mathrm{~Hz}$ "E" coil voltage codes see page 1.29

[^3]: (1) To obtain full load currents for 265 V and 277 V motors, decrease corresponding $220-240 \mathrm{~V}$ ratings by 13 percent and 17 percent.

