

ABB

Safety limit switches
 Latch key

Rotative axis Latch \& manual reset

Description of Red Safety Range

30 mm limit switches for safety applications, conforming to the IEC/EN 60947-5-1, EN1088 and EN954-1 standards, are available with a red casing in three types:

- Latch key - The key being straight or with a right angle, with or without shock absorber.
- Stainless steel rotative axis - Some limit switches come with a flush mounting lever. They offer double insulation with plastic casing (UL Type 4 (IP65)) and mechanical positive drive.

Latch \& manual reset range - These models offer double insulation with a grey plastic casing (UL type 4 (IP65)). Available actuators include plunger, roller plunger, roller lever on plunger and rotary lever.

30mm width - LS35P

CENELEC conformity
Actuating device and actuation type

Galvanized stee plain plunger

Notes

ABB
 Latch key safety limit switches

Description

Safety limit switches with small latch (key), made of fibre-glass reinforced UL-V0 thermoplastic material, offer double insulation and a degree of protection IP65. They are equipped with 1 N.C. + 1 N.O. or 2 N.C. contact blocks with dependent action and positive opening operation of the "N.C." contact(s).

Applications

Easy to use, the limit switches with small latch (key) offer specific qualities:

- Visible operation.
- Capability for strong current switching (conventional thermal current 10 A).
- Opening guaranteed of the "N.C." contact(s) when the small latch is withdrawn from the limit switch.
- Contact blocks with dependent action and positive opening operation of the "N.C." normally closed contact(s) (symbol Θ).
- Electrically separated contacts (Zb shape).
- Precision on operation positions (consistency).
- Immunity to electromagnetic disturbances.

These specific features make the limit switches ideal for monitoring and protection of industrial machines without inertia in which downtime is less than access time to the dangerous area. Use on sliding or pivoting protectors (covers, cases, doors, grids, etc.).

- They contribute to protection of operators working on dangerous machines, by opening the control circuit. Withdrawal of the small latch (key) by opening the mobile protector causes immediate stopping of the machine drive.
- Associated with other standard limit switches and safety switching devices, they produce automatic control circuits meeting standard EN 954-1.
- They comply with the requirements of European Directives (Low Voltage, Machines and Electromagnetic Compatibility) and are conform to European and international standards.

Latch key safety limit switches
 30 mm

Movement to be detected

Small Latch (Key), Front or Vertical Translation

Casing

- Plastic
- 30 mm width
- Degree of protection IP65

Accessories, special contact arrangement or particular function: please consult us.
Dimensions (in mm)

Latch key safety limit switches
 30 mm

Small latch (key), front or vertical translation

Accessories, special contact arrangement or particular function: please consult us.
Dimensions (in mm)

Latch key safety limit switches
 30mm

Movement to be detected

Small Latch (Key), Front or Vertical Translation

Casing

- Plastic
. 30 mm width
- Degree of protection IP65

Actuator		Right angle key (22 mm mounting)			Straight key (22 mm mounting)		
NC contact with positive opening operation Actuation speed: maximal / minimal Min. force: - for insertion of the key - for extraction of the key - positive opening operation		$\begin{gathered} \Theta \\ 0.5 / 0.01 \\ 15 \\ 10 \\ 30 \\ \hline \end{gathered}$					
Non-overlapping slow action contacts	Catalog number List price	$\begin{aligned} & \text { LS35P80D11-S } \\ & \$ 43 \end{aligned}$			$\begin{aligned} & \text { LS35P80D11-S } \\ & \$ 43 \end{aligned}$		
	Operation diagram						$\underset{\mid c}{21.5 \mathrm{~mm}}$
Overlapping slow action contacts	$\begin{array}{\|l} \hline \text { Catalog number } \\ \text { List price } \end{array}$	$\begin{gathered} \hline \text { LS35P80C11-S } \\ 43 \end{gathered}$			$\begin{gathered} \text { LS35P80C11-S } \\ 43 \end{gathered}$		
${ }_{14}^{13}\| \|_{22}^{21} \mid$	Operation diagram			$\stackrel{21.5 \mathrm{~mm}}{\sim}$			$\stackrel{21.5 \mathrm{~mm}}{\sim}$
Simultaneous slow action contacts	Catalog number List price	$\begin{gathered} \hline \text { LS35P80L02-S } \\ 43 \end{gathered}$			$\begin{gathered} \hline \text { LS35P80L02-S } \\ 43 \end{gathered}$		
	Operation diagram			$\stackrel{21.5 \mathrm{~mm}}{\stackrel{2}{2}}$			$\stackrel{21.5 \mathrm{~mm}}{\boldsymbol{\| c \|}}$
Weight with 1/2" NPT adaptor (packing per unit) kg		0.087			0.087		
Small Latch (Key) To order separately	Catalog number List price	$\begin{gathered} \text { LSA30P08 } \\ 9 \\ \hline \end{gathered}$			$\begin{gathered} \text { LSA30P09 } \\ \hline 11 \\ \hline \end{gathered}$		
Weight (packing per unit)	kg	0.014			0.022		

Accessories, special contact arrangement or particular function: please consult us.

Accessories, special contact arrangement or particular function: please consult us.
Dimensions (in mm)

Latch key safety limit switches
 30 mm

Small Latch (Key), Front or Vertical Translation

Straight key (13 mm fixing)
Right angle key with shock absorber

$\begin{aligned} & 15 \\ & 10 \\ & 30 \end{aligned}$			
LS35P81D11-S			
\$ 52			
$\begin{gathered} 0 \\ \substack{21-22 \\ 13.94 \\ 13.15 \\ \hline} \\ \hline \end{gathered}$	$\stackrel{21.5 \mathrm{~mm}}{\overbrace{-}}$	$\begin{gathered} \text { 21.22 } 1.93 .4 \\ \substack{13.14} \\ \hline 1 \end{gathered}$	$\stackrel{21.5 \mathrm{~mm}}{=}$

/ 0.01
15
(|

Right angle key with shock absorber
Θ
$0.5 / 0.01$
15
10
30
LS35P81D11-S
$\$ 52$

Accessories, special contact arrangement or particular function: please consult us.

Dimensions (in mm)

Discount schedule RM

Sate
 30 mm

Accessories, special contact arrangement or particular function: please consult us.

Latch key safety limit switches
 Technical data

Implementation
Limit switches with small latch (key) LS30P80...-S, LS31P80...-S and LS35P80...-S

- Head adjustment every 90°.

Limit switches with small latch (key) LS30P81...-S, LS31P81...-S and LS35P81...-S

- Pivoting head continuous between 0° to 360°.

Blanking off the window not used (IP4x protection)

Notes

ABB

Rotative axis limit switches

Description

Safety limit switches made of fibre-glass reinforced UL-V0 thermoplastic material, with rotative axis or flush mounting right angle lever, offer double insulation and a degree of protection IP65. They are equipped with 1 N.C. +1 N.O. or 2 N.C. contact blocks with dependent action and positive opening operation of the "N.C." contact(s).

Applications

Easy to use, the limit switches with rotative axis or lever offer specific qualities:

- Visible operation.
- Capability for strong current switching (conventional thermal current 10 A).
- Opening of the "N.C." contact(s) for a very small rotation angle: 7°.
- Contact blocks with dependent action and positive opening operation of the "N.C." normally closed contact(s) (symbol Θ).
- Electrically separated contacts (Zb shape).

Precision on operating positions (consistency) - Immunity to electromagnetic disturbances.

These specific features make the limit switches ideal for monitoring and protection of light industrial machines without inertia equipped with angular movement protectors (doors, hinged grids, rotative covers or cases, etc.). Detection by the rotative axis or by means of a lever.

- Opening of the mobile protector guarantees operator protection by immediately stopping the machine drive.
- These switches are suitable for conformity of the existing installed machine base, as they can be mounted on protection devices already installed.
- Associated with other standard limit switches and safety switching devices, they produce automatic control circuits meeting standard EN 954-1.
- They comply with the requirements of European Directives (Low Voltage, Machines and Electromagnetic Compatibility) and are conform to European and international standards.
Casing
- 30 mm wide with standardised dimensions corresponding
to EN 50047
Casing fixing
- $2 \times \mathrm{M} 4$ screws in the top part
Blocks of 2 contacts
- Contact configuration: $1 \mathrm{~N} . \mathrm{O}$. $+1 \mathrm{~N} . \mathrm{C}$. or $2 \mathrm{~N} . \mathrm{C}$.
- Positive opening operation Θ
- Contact dependent action
Zb shape: the 2 contacts are electrically separated
Connecting terminals
M3.5 screw with (+,-) posidriv 2 head
Screw heads with captive cable clamps
Marking conform to IEC $60947-1$, IEC $60947-5-1$,
EN 50005 and EN 50013 standards

Catalog number explanation

Rotative axis safety limit switches
30 mm

Casing

- Plastic . 30 mm width
- Degree of protection IP65
Actuator
"N.C." contact with positive opening operation Actuation speed: maximal / minimal Min. torque: - actuation - positive opening operation N.m

Accessories, special contact arrangement or particular function: please consult us.
Dimensions (in mm)

Movement to be detected

Angular with Lever

Casing

- Plastic
- 30 mm width
- Degree of protection IP65

Lever adjusted to the left (by user)

Lever in central position (factory assembled)

Lever adjusted to the right (by user)

Accessories, special contact arrangement or particular function: please consult us.
Dimensions (in mm)

Discount schedule RM
9.79

Rotative axis safety limit switches
Technical data

General Data

Electrical durability for AC-15 utilization category

Electrical durability for DC-13 utilization category

	Slow action Power breaking for a durability of 5 million operating cycles	
Voltage	24 V	12 W
Voltage	48 V	9 W
Voltage	110 V	6 W

Rotative axis safety limit switches

 Technical dataSpecifications, directives, standards \& EC conformity

Definitions

The ABB limit switches listed in this catalogue are developed and manufactured according to the rules set out in IEC international publications and EN European standards. In most countries, the devices are not subject to further obligation for approval. In some countries, however, the law stipulates obligation for approval.

Specifications

- International Specifications

The International Electrotechnical Commission, IEC, which is part of the International Standards Organization, ISO, publishes IEC publications which act as a basis for the world market.

- European Specifications

The European Committee for Electrotechnical Standardization (CENELEC), grouping 18 European countries, publishes EN standards for low voltage industrial apparatus. These European standards vary very little from IEC international standards and use a similar numbering system. The same is true of national standards. Contradicting national standards are withdrawn.

- Harmonized European Specifications

The European Committees for Standardization (CEN and CENELEC), grouping 18 European countries, publish EN standards relating to safety of machinery.

- Specifications in Canada and the USA

These are equivalent, but differ markedly from IEC, UTE, VDE and BS specifications.
UL Underwriters Laboratories (USA)
CSA Canadian Standards Association (Canada)
Remark concerning the label issued by the UL (USA). Two levels of acceptance between devices must be distinguished:
"Recognized" Authorized to be included in equipment, if the equipment in question has been entirely mounted and wired by qualified personnel. They are not valid for use as "General purpose products" as their possibilities are limited. They bear the mark: $\boldsymbol{\sim} \boldsymbol{R}$.
"Listed" Authorized to be included in equipment and for separate sale as "General purpose products" components in the USA.
They bear the mark: (4).

European Directives

The guarantee of free movement of goods within the European Community assumes elimination of any regulatory differences between the member states. European Directives set up common rules that are included in the legislation of each state while contradictory regulations are cancelled.
There are three main directives:

- Low Voltage Directive 73/23/EEC, amended by Directive 93/68/EEC concerning electrical equipment from 50 to 1000 V a.c. and from 75 to 1500 VDC. This specifies that compliance with the requirements that it sets out is acquired once the equipment conforms to the standards harmonized at European level: EN 60947-1 and EN 60947-5-1 for limit switches.
- Machines Directives-89/392/EEC,91/368/EEC,93/44/EEC,93/68/EEC-defining main safety and health requirements concerning design and manufacture of the machines and other equipment including safety components in European Union countries.
- Electromagnetic Compatibility Directive 89/336/EEC, amended by Directive 92/31/EEC and Directive 93/68/EEC concerning all electrical devices likely to create electromagnetic disturbances.

Signification of CE marking:

CE marking must not be confused with a quality label.
CE marking placed on a product is proof of conformity with the European Directives concerning the product.
CE marking is part of an administrative procedure and guarantees free movement of the product within the European Community.

Standards

- International standards

IEC 60947-1 Low-voltage switchgear and controlgear - Part 1: General Rules (NFC 63-001).
IEC 60947-5-1 Low-voltage switchgear and controlgear - Part 5: Control circuit devices and switching elements - Section 1: Electromechanical control circuit devices (NFC 63-146) - Chapter 3: Special requirements for control switches with positive opening operation.
IEC 60204-1 Electrical equipment of industrial machines - Part 1: General requirements (\approx NFC 79-130).
IEC 60204-2 Electrical equipment of industrial machines - Part 2: Item designation and examples of drawings, diagrams, tables and instructions (Appendices D and E of Publications IEC 60204-

- European Standards

EN 50005 Low-voltage switchgearandcontrolgearforindustrialuse-Terminal
marking and distinctive number: General rules (NFC 63-030).
Low-voltage switchgear and controlgear for industrial use - Terminal marking and distinctive number for particular control switches (NFC 63-033).
EN 50041 Low-voltage switchgear and controlgear for industrial use - Control switches - Position switches 42.5×80 - Dimensions and characteristics.
EN 50047 Low-voltage switchgear and controlgear for industrial use - Control switches - Position switches 30×55 - Dimensions and characteristics.
EN 60947-1 Low-voltage switchgear and controlgear for industrial use - Part 1: General rules (NFC 63-001).

EN 60947-5-1 Low-voltage switchgear and controlgear for industrial use-Part 5: Control circuit devices and switching elements - Section
1: Electromechanical control circuit devices (NFC 63-146)

- Chapter 3: Special requirements for control switches with positive opening operation.
- Harmonized European Standards

These standards are common to all European Union and EFTA (European Free Trade Association) countries. They were prepared (prEN project) and written (EN final text) by the European standardization committees CEN or CENELEC. technical means to be used to satisfy the main safety requirements on machines and thus guarantee conformity with the Machines Directive.
Compliance with a harmonized European standard is presumption of conformity with the relevant Directive.
European standards relating to machine safety are divided into groups (A, B and C types).
Type A standards: basic standards: setting out design principles and the general aspects valid for all machine types.
EN 292-1 Safety of machinery - Basic concepts, general principles for design - Part 1: Basic terminology, methodology.
EN 292-2 and Safety of machinery - Basic concepts, general principles for design - Part 2: Technical principles and specifications.
EN 292-2/A1
EN 1050 Safety of machinery - Principles for risk assessment.
Type B standards: group standards:
B1: dealing with specific safety aspects.
EN 60204-1 Safety of machinery - Electrical equipment of machines - Part 1: General requirements.
EN 954-1 Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design.

B2: dealing with components and devices determining safety.
EN 1088 Safety of machinery - Interlocking devices
Type C standards: specific standards or standards per machine family giving detailed safety specifications applicable to a machine or to a group of machines.
EN 81-1 Safety rules for the construction and installations of lifts - Part 1: Electric lifts.

Content of the "EC" Declaration of Conformity for Safety Components

The "EC" Declaration of Conformity is intended to certify that the safety component complies with the main safety and health requirements of Machines Directive 89/392/EEC.
It must contain the following information:

- the name and address of the manufacturer or his representative established in the European Community,
- the description of the safety component (brand, type, serial number, etc.),
- the safety function performed by the safety component if this is not obvious from the description,
- when needed, the name and address of the notified organisation and the number of the type "CE" certificate,
- when needed, the name and address of the notified organisation to which the file has been sent as per article 8, paragraph 2, point c), first hyphen,
- when needed, the name and address of the notified organisation who performed the check referred to in article 8, paragraph 2, point c), second hyphen,
- when needed, the reference to the harmonized standards,
- when needed, the national technical standards and specifications used,
- identification of the signatory authorized to hire the manufacturer or his representative established in the European Community.

Rotative axis safety limit switches Technical data
Risk assessment \& determination of control system categories

Classification of a machine into categories to EN 954-1
Pursuant to the Machinery Directive 89/392/EEC, every machine must comply with the relevant Directives and standards. Measures must be taken to keep the risk to persons below a tolerable extent.
In the first step, the project planner performs a risk evaluation to EN 1050 "Risk Assessment". This must take into consideration the machine's ambient conditions for instance. Any overall risk must then be assessed. This risk assessment must be conducted in such a form as to allow documentation of the procedure and the result achieved. The risk, dangers and possible technical measures to reduce risks and
dangers must be stipulated in this risk assessment. After stipulating the extent on the risk, the category on the basis of which the safety circuits are to be designed is determined with the aid of EN 954-1 "Safety-Related Components of Controls". This determined category defines the technical requirements applicable to the design of the safety equipment. There are five categories ($\mathrm{B}, 1,2,3$ and 4) whereby B (standing for basic category) defines the lowest risk and, thus, also the minimum requirements applicable to the controller.

Rotative axis safety limit switches Technical data Control system categories as per EN 954-1

The main aim of all machine designers is to guarantee that the faults on safety-related control system parts or external disturbances cannot result in a dangerous situation or a dangerous event on the machine.
The summarising table below determines the category of the safety-related control system parts.

Categories	Summary of control system requirements	Control system behavior	Main principle for ensuring safety
B	The parts of the safety-related control system and / or its devices must be designed, manufactured, selected, mountedandcombined according to proper procedures so as to withstand expected influences.	If a fault occurs, it may lead to possible loss of the safety function.	By selection of components conforming to relevant standards.
1	The requirements formulated in category B are combined with use of tried and tested safety components and principles.	- Occurrence of a fault may lead to possible loss of the safety function, but this is less probable than in category B.	By choice and use of safety components and principles.
2	The requirements formulated in category B and use of tried and tested safety principles apply. The safety function(s) must be tested regularly by the machine control system. Test frequency must be adapted to the machine and to its application.	- Occurrence of afaultmay lead to possible loss of the safety function between the periodic test intervals. - Loss of the safety function is detected at each test.	By improvement of safety circuit structure.
3	The requirements formulated in category B and use of tried and tested safety principles apply. The control system must be designed so that: a) a single fault in the control does not lead to loss of the safety function and... (see paragraph b). b) if this is reasonably feasible, the single fault must be detected by appropriate technical means.	- When a single fault occurs, the safety function is always guaranteed. - Some faults will be detected, but not all. - Accumulation of undetected faults may lead to loss of the safety function.	By improvement of safety circuit structure.
4	The requirements formulated in category B and use of tried and tested safety principles must be applied. The control system must be designed so that: a) a single fault in the control does not lead to loss of the safety function and... (see paragraph b). b) if possible the single fault must be detected as soon as or before the next tripping of the safety function or... (see paragraph c). c) if this was not possible, an accumulation of faults must not lead to loss of the safety function.	- When faults occur, the safety function is always guaranteed. - The faults will be detected in time to prevent loss of the safety function.	By improvement of safety circuit structure.

Important: The safety categories apply to the entire control system and not to the individually considered safety components.

$\%$
 Rotative axis safety limit switches Technical data

Tightening torques

Connecting data of contact blocks

Connecting terminals	M3.5 (+,-) pozidriv 2 screw with cable clamp	
Connecting capacity	1 or $2 \mathrm{x} \mathrm{mm}^{2} / \mathrm{AWG}$	$0.5 \mathrm{~mm}^{2} /$ AWG 20 to $2.5 \mathrm{~mm}^{2} /$ AWG 14
Terminal marking	According to EN 50013	

Rotative axis safety limit switches
Technical data

P_{0} Free position:
position of the switch actuator when no external force is exerted on it.
P_{A} Operating position:
position of the switch actuator, under the effect of force F1, when the contacts leave their initial free position.
$P_{p} \quad$ Positive opening position:
position of the switch actuator from which positive opening is ensured.
L Max. travel position:
maximum acceptable travel position of the switch actuator under the effect of a force F1.

Note: $\quad C_{1-1}=$ pre-travel of contact 21-22, $C_{1-2}=$ pre-travel of contact 13-14.
C_{1} Pre-travel (average travel): distance between the free position P_{o} and the operating position P_{A}.
C_{p} Positive opening travel:
minimum travel of the switch actuator, from the free position, to ensure positive opening operation of the normally closed contact (N.C.).
C_{2} Over-travel (average travel): distance between the operating position P_{A} and the max. travel position L .
C_{L} Max. travel (maximum travel): distance between the free position P_{O} and the max. travel position L.

Examples:

Contacts position

$21-22 \square$ Contact closed 21-22 \sqsubset Contact open

Rotative axis safety limit switches Technical data Terminology

Double Insulation

Class II materials, according to IEC 536, are designed with double insulation. This measure consists in doubling the functional insulation with an additional layer of insulation so as to eliminate the risk of electric shock and thus not having to protect elsewhere. No conductive part of "double insulated" material should be connected to a protective conductor.

Positive Opening Operation

A control switch, with one or more break-contact elements, has a positive opening operation when the switch actuator ensures full contact opening of the break-contact. For the part of travel that separates the contacts, there must be a positive drive, with no resilient member (e.g. springs), between the moving contacts and the point of the actuator to which the actuating force is applied.
Control switches with positive opening operation may be provided with either snap action or slow action contact elements. To use several contacts on the same control switch with positive opening operation, they must be electrically separated from each other, if not, only one may be used.
Every control switch with positive opening operation must be indelibly marked on the outside with the symbol:

Snap Action

Snap action contacts are characterised by a release position that is distinct from the operating position (differential travel). Snap breaking of moving contacts is independent of the switch actuator's speed and contributes to regular electric performance even for slow switch actuator speeds.

Slow Action

Slow action contacts are characterised by a release position that is the same as the operating position. The switch actuator's speed directly conditions the travel speed of contacts.

Contact shape according to IEC 60947-5-1.
Change-over contact elements with 4 terminals must be indelibly marked Za or Zb.
See figure opposite for contact representation.

Utilization category

AC-15: switching of electromagnetic loads of electromagnets using an alternating current (>72 VA).
DC-13: switching of electromagnets using a direct courant.

Minimum actuation force / torque

The minimum amount of force/torque that is to be applied to the switch actuator to produce a change in contact position.

Minimum force / torque to achieve positive opening operation

The minimum amount of force/torque that is to be applied to the switch actuator to ensure positive opening operation of the N.C. contact.
$\frac{9.86}{\text { AC } 1000-11 / 03}$ Low Voltage Products \& Systems

Rotative axis safety limit switches
Technical data Utilization cautions

Rotative axis safety limit switches
Technical data

Implementation

Limit switches with rotative axis LS35P75...-S, LS35P76...-S

- Head adjustment every 90°

Limit switches with flush mounting right angle lever

LS35P77...-S

- Head adjustment every 90°

Each lever adjustment has a specific operation diagram.
(In these exxamples, the diagrams correspond to an LO2 contact block.)

ABB

Latch \& manual reset Safety limit switches

Description

Limit switches with latch and manual reset are equipped with operating heads with plunger, roller plunger or roller lever, used to detect rectilinear or angular movements.
Made of fibre-glass reinforced UL-V0 thermoplastic material, they offer double insulation and a degree of protection IP65.
Limit switches with latch and manual reset are equipped with 1 N.C. +1 N.O. or 2 N.C. contact blocks with positive opening operation of the "N.C." contact(s). After actuating the control device and overshooting the latching point, the N.C. safety contact(s) remain in the open position. Return to the initial operating state takes place by voluntary action on the reset button.

Applications

Easy to use, the limit switches for safety applications with latch and manual reset offer specific qualities:

- Visible operation (fault memorisation).
- Capability for strong current switching (conventional thermal current 10 A).
- Contact blocks with positive opening operation of the "N.C." normally closed contact(s) (symbol Θ).
- Electrically separated contacts (Zb shape).
- Precision on operating positions (consistency).
- Immunity to electromagnetic disturbances.

These specific features make the limit switches ideal for detection and monitoring of faults in hoisting machines, electric lifts, freight elevators, escalators, conveyor belts, etc.
Limit switches with latch and manual reset comply with the requirements of standard EN 81-1: safety rules for the construction and installations of electric lifts. In this application they detect or monitor: cabin overtravel, cabin speed by means of a speed limiting device, energisation of the parachute block on detecion of excessive speed with respect to the set-point value, etc.

They comply with the requirements of European Directives (Low Voltage, Machines and Electromagnetic Compatibility) and are conform to European and international standards.

Catalog number explanation

Latch \& manual reset 30 mm				
Movement to be detected On End ${ }^{\text {and }}$ Ond or $30^{\circ} \mathrm{Cam}$ Translation				
Casing - Plastic - 30 mm width - Degree of protection IP65				
Actuator		Galvanized steel plain plunger	Galvanized steel roller plunger	Plastic roller plunger
"N.C." contact with positive opening operation Maximum actuation speed Min. force: - actuation - positive opening operation		$\begin{gathered} \Theta \\ 0.5 \\ 9 \\ 44 \end{gathered}$	$\begin{aligned} & \Theta \\ & 0.3 \\ & 12 \\ & 41 \end{aligned}$	$\begin{aligned} & \Theta \\ & 0.3 \\ & 12 \\ & 41 \end{aligned}$
Non-overlapping slow action contacts	Catalog number List price	$\begin{aligned} & \text { LS35P11D11-R } \\ & \quad \$ 39 \end{aligned}$	$\begin{aligned} & \text { LS35P12D11-R } \\ & \quad \$ 43 \end{aligned}$	$\begin{aligned} & \text { LS35P13D11-R } \\ & \quad \$ 41 \end{aligned}$
	Operation diagram			
Simultaneous slow action contacts	Catalog number List price	$\begin{gathered} \text { LS35P11L02-R } \\ 39 \end{gathered}$	$\begin{gathered} \text { LS35P12L02-R } \\ 43 \end{gathered}$	$\begin{gathered} \text { LS35P13L02-R } \\ 41 \end{gathered}$
	Operation diagram			
Snap action contacts	Catalog number List price	$\begin{gathered} \text { LS35P11B02-R } \\ 39 \end{gathered}$	$\begin{gathered} \text { LS35P12B02-R } \\ 43 \end{gathered}$	$\begin{gathered} \text { LS35P13B02-R } \\ 41 \end{gathered}$
$\left.\left.{ }_{12}^{11}\right\|_{22} ^{21}\right\|_{2} ^{21} \mathrm{Zb}$	Operation diagram			
Weight (packing per unit)	kg	0.097	0.102	0.097

Accessories, special contact arrangement or particular function: please consult us.

Accessories, special contact arrangement or particular function: please consult us.

Dimensions (in mm)

Low Voltage Products \& Systems

ABB Inc. • 888-385-1221 • www.abb-control.com
9.91

Latch \& manual reset
 Technical data

Tightening Torques

	A		B		C		D		E	
	Contact block connecting terminals		Closing the cover		Assembling the operating head		Assembling or adjusting the lever with plastic roller		Cable inlet by 1/2" NPT adaptor	
Screws	M3.5 \pm pozidriv 2		$\varnothing 3 \pm$ pozidriv 1		ø3 \pm pozidriv 1		$ø 4 \pm$ Philips No. 2		-	
Tightening torque	Recommended N.m / lb.in	Max. N.m	Recommended N.m / lb.in	Max. N.m	Recommended N.m / Ib.in	Max. N.m	Recommended N.m / lb.in	Max. N.m	Recommended N.m / lb.in	Max. N.m
Limit switches										
LS35P11...-R	$0.8 / 7$	0.9	$0.5 / 4.3$	0.8	0.5 / 4.3	0.8	-	-	17 / 150	18
LS35P12...-R	$0.8 / 7$	0.9	$0.5 / 4.3$	0.8	0.5 / 4.3	0.8	-	-	17 / 150	18
LS35P13...-R	$0.8 / 7$	0.9	$0.5 / 4.3$	0.8	0.5 / 4.3	0.8	-	-	17 / 150	18
LS35P31...-R	$0.8 / 7$	0.9	$0.5 / 4.3$	0.8	0.5 / 4.3	0.8	-	-	17 / 150	18
LS35P32...-R	$0.8 / 7$	0.9	$0.5 / 4.3$	0.8	0.5 / 4.3	0.8	-	-	17/150	18
LS35P41...-R	$0.8 / 7$	0.9	$0.5 / 4.3$	0.8	0.5 / 4.3	0.8	0.5 / 4.3	0.8	17 / 150	18

Connecting data of contact blocks

Connecting terminals	M3.5 (+,-) pozidriv 2 screw with cable clamp
Connecting capacity	1 or $2 \times \mathrm{mm}^{2} / \mathrm{AWG}$

Latch \& manual reset
Technical data

Travel and operation diagrams

\mathbf{P}_{o} Free position:
position of the switch actuator when no external force is exerted on it.
P_{A} Operating position:
position of the switch actuator, under the effect of force F1, when the contacts leave their initial free position.
P_{p} Positive opening position:
position of the switch actuator from which positive opening is ensured.
S_{A} Latching point:
point of no return of the switch actuator beyond which the opened status of the (N.C.) contact(s) is maintained. Unlocking will only occur after deliberate action on the reset button.

L Max. travel position:
maximum acceptable travel position of the switch actuator under the effect of a force F1.
P_{R} Release position:
position of the switch actuator when the contacts return to their initial free position.
C_{1} Pre-travel (average travel):
distance between the free position P_{0} and the operating position P_{A}.
C_{p} Positive opening travel:
minimum travel of the switch actuator, from the free position, to ensure positive opening operation of the normally closed contact (N.C.).
C_{A} Latching travel (average travel):
distance between the free position P_{O} and the latching point S_{A}.
C_{2} Over-travel (average travel):
distance between the operating position P_{A} and the max. travel position L.
C_{L} Max. travel (maximum travel):
distance between the free position P_{O} and the max. travel position L.
C_{3} Differential travel $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ (average travel): travel difference of the switch actuator between the operating position P_{A} and the release position P_{R}.
C_{4} Release travel (average travel):
distance between the release position P_{R} and the free position P_{o}.

Note: for slow action contacts, $\mathbf{C}_{3}=0, \mathbf{C}_{1-1}=$ pre-travel of contact 21-22, $\mathbf{C}_{1-2}=$ pre-travel of contact 13-14.

Examples:

LS30P13D11-R
non-overlapping slow action contacts

LS30P41L02-R
simultaneous slow action contacts

Diagram in millimetres / cam travel

Diagram in degrees / lever rotation

Diagram in millimetres / plunger travel

Latch \& manual reset
 Technical data
 Terminology

Double Insulation

Class II materials, according to IEC 536, are designed with double insulation. This measure consists in doubling the functional insulation with an additional layer of insulation so as to eliminate the risk of electric shock and thus not having to protect elsewhere. No conductive part of "double insulated" material should be connected to a protective conductor.

Positive Opening Operation

A control switch, with one or more break-contact elements, has a positive opening operation when the switch actuator ensures full contact opening of the break-contact. For the part of travel that separates the contacts, there must be a positive drive, with no resilient member (e.g. springs), between the moving contacts and the point of the actuator to which the actuating force is applied.
Control switches with positive opening operation may be provided with either snap action or slow action contact elements. To use several contacts on the same control switch with positive opening operation, they must be electrically separated from each other, if not, only one may be used.
Every control switch with positive opening operation must be indelibly marked on the outside with the symbol:

Snap Action

Snap action contacts are characterised by a release position that is distinct from the operating position (differential travel). Snap breaking of moving contacts is independent of the switch actuator's speed and contributes to regular electric performance even for slow switch actuator speeds.

Slow Action

Slow action contacts are characterised by a release position that is the same as the operating position. The switch actuator's speed directly conditions the travel speed of contacts.

Contact shape according to IEC 60947-5-1.
Change-over contact elements with 4 terminals must be indelibly marked Za or Zb.
See figure opposite for contact representation.

Utilization category

AC-15: switching of electromagnetic loads of electromagnets using an alternating current (>72 VA).
DC-13: switching of electromagnets using a direct courant.

Minimum actuation force / torque

The minimum amount of force/torque that is to be applied to the switch actuator to produce a change in contact position.

Minimum force / torque to achieve positive opening operation

The minimum amount of force/torque that is to be applied to the switch actuator to ensure positive opening operation of the N.C. contact.

Latch \& manual reset
Technical data Implementation

Implementation
Limit switches with latch and manual reset

LS35P...-R.

- Adjustment of the heads reference P11, P12, P13, P31 and P32.

- Angular adjustment 10° in 10° of the lever on head P41.

- Adjustment of the head reference P41.

- Lever round turning on head P41.

Latch \& manual reset
Technical data
Utilization precautions
Plain plunger

Roller plunger or roller lever

Latch \& manual reset
Technical data
Utilization precautions

Curve of connecting cable / cable gland orientation

Latch \& manual reset

Technical data
EN 50047 standard

The European Committee for Electrotechnical Standardization (CENELEC), which groups together 18 European countries, publishes EN standards. The present standard defines dimensions and mechanical data for limit switches ($30 \mathrm{~mm} \times 55 \mathrm{~mm}$).

A Shape

Roller lever operating heads

C Shape

Roller plunger operating heads

B Shape

Rounded plunger operating heads

E Shape

Roller lever operating heads

Latch \& manual reset
Technical data
EN 50041 standard

The European Committee for Electrotechnical Standardization (CENELEC), which groups together 18 countries, publishes EN standards. The present standard defines dimensions and mechanical data for limit switches ($42.5 \times 80 \mathrm{~mm}$).

A Shape

Roller lever operating heads

B Shape
Rounded plunger operating heads

C Shape

Roller plunger operating heads

D Shape
Rod operating heads

F Shape
Rounded lateral plunger operating heads

G Shape
Lateral roller plunger operating heads - Lateral actuation

Lateral roller plunger operating heads - Front actuation

