ABB
 Electronic overload relays E16DU - E800DU

Description

- Available for starter construction with A Line contactors and separate panel mounting
- Designed for close couple mounting
- Separate base mounting available for all overload relays
- E16DU Class 10, 20, \& 30, factory selectable
- E200DU - E800DU Class 10, 20 \& 30, field selectable

Single phase and phase unbalance protection

- Isolated alarm circuit (N.O.) contact
- Ambient compensation: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
- Manual test
- Manual or automatic reset
- Factory calibrated and tested
- Wide adjustment range
- UL File No: E48139
- CSA File No: LR98336
- Stop button
- All terminal screws are available from the front

Tripping classes of the thermal overload relays
Standard classes in IEC 947-4-1 are classes: 10 A, 10, 20, 30. The tripping class indicates according to IEC 947-4-1 the maximum tripping time in seconds under specified conditions of test at 7.2 times the setting current and specifies tripping and non tripping times for 1.5 and 7.2 times the setting current. Mostly used class is 10 A .

Abstract from IEC 947-4-1

Tripping class	10 A	10	20	30	
Max. tripping time at $1.5 \times$ setting current (warm state)	(s)	120	240	480	720
Tripping time at $7.2 \times$ setting current (cold state)	(s)	$2-10$	$4-10$	$6-20$	$9-30$
At $1.05 \times$ setting current	no tripping				

General information
 Catalog number explanation

Catalog number explanation

E16DU 1.010

E16DU - E800DU
for contactors and mini contactors

E16DU - Tripping Class 10				
For contactor	Setting range	Suffix code	Catalog number ©	List price
	$0.1-0.32$	A1	E16DU0.32-10	
B/BC6 - B/BC7	$0.3-1.0$	B1	E16DU1.0-10	
A/AE/AL9 - A/AE/AL16	$0.9-2.7$	C1	E16DU2.7-10	\$ 96
	$2.0-6.3$	D1	E16DU6.3-10	

E16DU - Tripping class 20

ETH For contactor	Setting range	Suffix code	Catalog number (1)	List price
	$0.1-0.32$	A2	E16DU0.32-20	
B/BC6 - B/BC7	$0.3-1.0$	B2	E16DU1.0-20	
A/AE/AL9 - A/AE/AL16	$0.9-2.7$	C2	E16DU2.7-20	\$96
	$2.0-6.3$	D2	E16DU6.3-20	

E16DU - Tripping class 30

For contactor	Setting range	Suffix code	Catalog number (1)	List price
	$0.1-0.32$	A3	E16DU0.32-30	
B/BC6 - B/BC7	$0.3-1.0$	B3	E16DU1.0-30	
A/AE/AL9 - A/AE/AL16	$0.9-2.7$	C3	E16DU2.7-30	\$96
	$2.0-6.3$	D3	E16DU6.3-30	

E200DU - E800DU - Tripping class 10, 20 \& 30

For contactor	Setting range	Suffix code	Catalog number (1)	List price
A/AF145 - A/AF185	$65-200$	E2	E200DU200	$\$ 325$
A/AF210a - A/AF300	$105-320$	E3	E320DU320	775
AF400 - AF460	$170-500$	E5	E500DU500	865
AF580 - AF750	$270-800$	E8	E800DU800	950

Accessories

2

A300 contactor with E320 overload \& LT320E terminal shrouds

Mounting kits
for direct mounting on contactors AF400 - AF750

For overload relays	On contactor	Catalog number	List price
E500DU	AF400 - AF460 AF400 - AF460 w/reversing kits	DT500/AF460S DT500/AF460L	$\$ 395$
E800DU	AF580 - AF750 AF580 - AF750 w/reversing kits	DT800/AF750S DT800/AF750L	$\mathbf{4 1 5}$

Separate mounting kits

For overload relays	Catalog number	List price
E16DU	DB16E	$\$ 15$

Lug kits

Wire range	Electronic overload	Catalog number	List price
$6-250 \mathrm{MCM}$	E200DU200	ATK185	$\$ 45$
$4-400 \mathrm{MCM}$	E320DU320	ATK300	68
$(2) 4-500 \mathrm{MCM}$	E320DU320	ATK300/2	110
(2) $2 / 0-500 \mathrm{MCM}$	E500DU500	ATK580/2HK	160
(3) $2 / 0-500 \mathrm{MCM}$	E800DU800	ATK750/3HK	$\mathbf{2 3 5}$

Terminal shrouds

For overload relays	Catalog number	List price
E200DU	LT200E	$\mathbf{\$ 4 1}$
E320DU	LT320E	LT500E
E500DU	LT800E	52

\qquad

Technical data

General technical data

Technical data of the current paths

Type	E 16 DU
Number of paths	3
Setting ranges	see page 2.21
Tripping class acc. to IEC 947-4-1/EN 60 947-4-1	see page 2.21
Operating frequency	50 and 60
Switching frequency without early tripping	up to 80 ops./h with 40% continuous duty if starting current not higher
than $6 \times I_{n}$ and starting time not longer than 1 s	
Resistance per phase q and heat dissipation per phase in W acc. to max. setting current	see page 2.24
Required fuses for short circuit protection	see page 2.24

2

Tripping characteristics

Resistance and power dissipation

Setting range	gL/gG	Short circuit protection ULCSA U00V 5kA			Resistance U80V/50kA	per phase phase
A-A	A	RK5	Class J	$\mathrm{m} \Omega$	per phase at upper current setting	
$0.1-0.32$	1	2	2	970	q	W
$0.3-1.0$	4	2	2	113	0.113	0.1
$0.9-2.7$	10	4	4	14	0.014	0.11
$2.0-6.3$	20	15	15	2.4	0.0024	0.1
$5.7-18.9$	50	30	30	0.8	0.0008	0.29

Technical characteristics of auxiliary contacts

Type	N.C. $95-96$	N.O. $97-98$
Rated operational voltage U_{e}	V	500
Conventional free air thermal current $\mathrm{I}_{\text {th }}$	A	6
Rated operational current $\mathrm{I}_{\text {th }}$		
on AC-15, 230V	A	3
on AC-15, 400V	A	1.1
on AC-15, 500V	A	0.9
on AC-15, 690V	A	0.7
on DC-13, 24V	A	1.5
on DC-13, 60V	A	0.5
on DC-13, 110V	A	0.4
on DC-13, 220V	A	0.2
Short circuit protection $\mathrm{gG}(\mathrm{gf})$ fuses	A	6

Technical data E200DU - E800DU

Type	E200DU	E320DU	E500DU	E800DU
Standards: (major international \& European standards	IEC 60947-4-1, EN 60947-4-1, IEC 60947-5-1, EN 60947-5-1			
Approvals, certificates	UL, CSA			
Rated insulation voltage U_{i} according to IEC 158-1, IEC 60947-4-1	690			
Impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}$ according to IEC 60947-4-1	6			
Permissible ambient temperature - for storage - with compensated operation	$\begin{aligned} & -25 \text { to }+70 \\ & -25 \text { to }+70 \end{aligned}$			
Climatic resistance according to:	IEC 68-2-1, IEC 68-2-2, IEC 68-2-14, IEC 68-2-30		IEC 68-2-1, IEC 68-2-2, IEC 68-2-30	
Mounting positions	multiple			
$\begin{array}{rr}\text { Resistance to shock (EN 61373) } & \text { Shock duration ms } \\ \text { multiple of } \mathrm{g}\end{array}$	305			
Resistance to vibrations (EN 61373)	Category 1, Class B			
Mounting - on contactor - single mounting	$2 \times \mathrm{M} 4$			
Terminal types and connecting capacity of auxiliary contacts - Screw terminals (screw size) - with self-disengaging clamping piece - Torque	$\begin{gathered} \text { M3.5 } \\ 1.0 \\ \hline \end{gathered}$			
Connection cross sections - Single core or stranded - Flexible with connector sleeve	$\begin{aligned} & 2 \times 0.75 \ldots . .4 \\ & 2 \times 0.75 \ldots . .4 \end{aligned}$			
Terminal types and connecting capacity of main conductors - Screw terminals (screw size) - with busbar or cable lugs	M8	M10	M10 (bars are accessories)	M 12 (bars are accessories)
Protection degree to IEC 947-1/EN 60 947-1	All auxiliary contact terminals are safe from finger touch and touch by the back of the hand in accordance with VDE 0106, Part 100. Main contact terminals are safe from finger touch only with appropriate terminal covers			
Number of current paths	3			
Setting ranges A	65-200	105-320	170-500	270-800
Tripping class according to IEC 947-4-1/EN 60 947-4-1	10, 20, 30			
Operating frequency Hz	50 and 60for three phase current only			
Weight $\mathrm{lb} / \mathrm{kg}$	1.72 / 78	1.85 / . 84	2.60 / 1.18	$9.35 / 4.24$

NOTE: Installation and maintenance have to be performed according to the technical rules, codes and relevant standards by skilled electricians only.

- When using the "Auto" setting, remember that this means the overload will automatically reset after tripping and the motor may restart automatically. This automatic restart could cause harm to personnel and material.
- The overload relay mut be exchanged for a new one in case of mechanical and/or electrical damage to prevent harm to personnel and material.

Technical data

Terms and technical definitions

Altitude
Characterizes the place of use. It is expressed in meters above sea level.
Circuits

- Auxiliary circuit - all the conductive parts of a contactor designed to be inserted in a different circuit from the main circuit and the contactor control circuits.
- Control circuit - all the conductive parts of a contactor (other than the main circuit and the auxiliary circuit) used to control the contactor's closing operation or opening operation or both.
- Main circuit - all the conductive parts of a contactor designed to be inserted in the circuit that it controls.
Insulation Class according to NFC 20040 and VDE 0110
Characterizes adaptation of the devices to ambient temperature and operating conditions. For given clearances and creepage distances, a device will have different insulating voltages depending on insulation classes A, B, C \& D. Class C corresponds to most industrial applications. The devices in this catalog belong to Class C .
Coordination of equipment protections during a short circuit This is the addition upstream of the contactor and thermal overload relay of a short circuit (SCPD) protection device such as a circuit breaker, a fuse with a high breaking capacity or other fuses.
IEC publication 947-4-1 defines coordination Types $1 \& 2$:
- Type 1 - Coordination requires that, in the event of a short circuit, the contactor or starter does not endanger persons or installations and will not be able to operate without being repaired or parts being replaced.
- Type 2 - Coordination requires that, in short circuit conditions, the contactor or starter does not endanger persons or installations and will be able to operate afterwards. The risk of contacts being welded is acceptable. In this case, the manufacturer must stipulate the measures to be taken with respect to maintenance of the equipment.

Rated operational current $I_{\text {I }}$
Current rated by the manufacturer. It is mainly based on the rated operational voltage U_{e}, the rated frequency, the utilization category, the rated duty and the type of protective enclosure, if necessary.
Conventional free air thermal current $I_{\text {th }}$
Current that the contactor can withstand in free air for a duty time of 8 hours without the temperature rise of its various parts exceeding the maximum values given by the standard.

Cycle time
Cycle time is the sum of the current flow time and the no-current time for given cycle.
Electrical durability
Number of on-load operations that the contactor is able to carry out; it depends on the utilization category.
Mechanical durability
Number of no-current operations that a contactor is able to carry out.
Load factor
Ratio of the on-load operating time to the total cycle time $\times 100$.
Switching frequency
Number of switching cycles per hour.

E16DU with DB16E

E16DU with A/AE9, A/AE12, A/AE16

E200DU

2

