ARF Transformers

Description

- Epoxy encapsulated coils up through 750VA
- Epoxy resin impregnated coils 1 kVA to 5 kVA
- Provides stepped down voltages for machine tool control devices and industrial control panels
- Laminations of high quality silicon steel

Optimized performance

- Copper magnet wire providing the highest quality and efficient operation
- Molded-in terminals
- $55^{\circ} \mathrm{C}$ rise, Class 10 insulation system
- $50 / 60 \mathrm{~Hz}$
- Minimum core loss
- UL File \# E175311
- CSA File \#LR27533
- IP 20 Touch safe covers available as an option
- Transformers with CE Mark available

General information

Catalog number explanation

Option
Industrial control transformer
Primary voltage rating (1)

[^0]
General information

Regulation

Selecting a transformer for industrial control circuit applications requires knowledge of the following terms:

INRUSH VA is the product of load voltage (V) multiplied by the current (A) that is required during circuit start-up. It is calculated by adding the inrush VA requirements of all devices (contactors, timers, relays, pilot lights, solenoids, etc.), which will be energized together. Inrush VA requirements are best obtained from the component manufacturer.

SEALED VA is the product of load voltage (V) multiplied by the current (A) that is required to operate the circuit after initial start-up or under normal operating conditions. It is calculated by adding the sealed VA requirements of all electrical components of the circuit that will be energized at any given time. Sealed VA requirements are best obtained from the component manufacturer. Sealed VA is also referred to as steady state VA.

PRIMARY VOLTAGE is the voltage available from the electrical distribution system and its operational frequency, which is connected to the transformer supply voltage terminals.

SECONDARY VOLTAGE is the voltage required for load operation which is connected to the transformer load voltage terminals.

Once the circuit variables have been determined, transformer selection is a simple 5-step process as follows:

1. Determine the application inrush VA by using the following industry accepted formula:
Application inrush VA $=\sqrt{(\text { INRUSH VA) })^{2}+(\text { SEALED VA) }}$
2. Refer to the Regulation Data chart. If the primary voltage is basically stable and does not vary by more than 5% from nominal, the 90% secondary voltage column should be used. If the primary voltage varies between 5 and 10% of nominal, the 95% secondary voltage column should be used.
3. After determining the proper secondary voltage column, read down until a value equal to or greater than the application inrush VA is found. In no case should a figure less than the Application Inrush VA be used.
4. Read left to the Transformer VA rating column to determine the proper transformer for this application. As a final check, make sure that the Transformer VA rating is equal to or greater than the total sealed requirements. If not, select a transformer with a VA rating equal to or greater than the total sealed VA.
5. Refer to transformer selection pages to determine the proper catalog number based on the transformer VA, and primary and secondary voltage requirements.

Inrush

Industrial control circuits and motor control loads typically require more current when they are initially energized than under normal operating conditions. This period of high current demand, referred to as inrush, may be as great as ten times the current required under steady state (normal) operation conditions and can last up to 40 milliseconds.

A transformer in a circuit subject to inrush will typically attempt to provide the load with the required current during the inrush period. However, it will be at the expense of the secondary voltage stability by allowing the voltage to the load to decrease as the current increases. This period of secondary voltage instability, resulting from increased current, can be of such a magnitude that the transformer is unable to supply sufficient voltage to energize the load.

This transformer must therefore be designed and constructed to accommodate the high inrush current, while maintaining secondary voltage stability. According to NEMA standards, the secondary voltage should typically be at 85% of the rated voltage.

Industrial Control Circuit Transformers by ABB Control Inc. are specifically designed and built to provide adequate voltage to the load while accommodating the high current levels present at inrush. These transformers deliver excellent secondary voltage regulation and meet or exceed the standards established by NEMA, ANSI, UL and CSA. Their hearty construction and excellent electrical characteristics assure reliable operation of electromagnetic devices and troublefree performance.

Regulation Data Chart

Transformer VA rating 	$\mid 3$ secondary voltage	Inrush VA at 20% power factor secondary voltage	
	100	130	150
75	170	200	240
100	310	410	540
150	370	540	730
200	780	930	1150
250	810	1150	1450
300	1400	1900	2300
350	1900	2700	3850
500	3100	3650	4800
750	4000	5300	7000
1000	8300	11000	14000
1000	15000	21000	27000
1500	9000	13000	18500
2000	10500	15000	205000
3000	17000	25500	34000
5000	24000	36000	47500

To comply with NEMA standards, which require all magnetic devices to operate successfully at 85% of rated voltage, the 90% secondary voltage column is most often used in selecting a transformer.

NOTE

For UL overcurrent protection, see page 12.11

[^1](2) For units with class $180^{\circ} \mathrm{C}$ insulation systems.

General information

IEC-742

The requirements for industrial control circuit transformers to be used in the European Common Market are identified by the International Electrotechnical Commission (IEC) and specified under IEC-742, Non-Short Circuit Proof Isolating Transformers, under the Low Voltage Directive 73/23/EEC. Manufacturers of control transformers indicate compliance with these requirements by placing a CE mark on the product.

In addition to being able to handle the inrush requirements of industrial control circuits and motor loads, transformers built to the requirements of IEC-742 will exhibit several major construction differences from those manufactured in accordance with UL506. These construction differences will typically increase not only the physical size of the transformer when compared to those built only to UL requirements, but the inrush capability as well.

- The winding insulation thickness requirements, depending upon electrical currents, are comparable layer to layer for IEC-742 versus UL506. Winding to winding insulation requirements, however, may be twice that for IEC-742 compared to UL506.
- The electrical clearances between current carrying parts are one-third greater to comply with IEC-742 requirements for units up to 250VA with voltages up to 440 volts ac.
- The dielectric strength (hipot) test voltages are twice as long in duration to comply with IEC-742 compared to UL506 for all units and up to one-and-a-half times greater in magnitude on smaller VA sizes.
- Transformers manufactured to IEC-742 requirements will have a minimum of 10% higher overload capacity than those manufactured only to UL506 requirements.

I IEC-742 requires that transformers in a failure mode under excessive current (10 times the unit rating) must not exhibit flame or molten material. There is no comparable requirement under UL506.

While no requirement exists in IEC-742 for the electrical connections to be either finger safe or touch proof, the specification does state that IF a transformer is supplied with a cover to prevent incidental contact with current carrying parts, that cover must utilize two separate methods or places of securing it to the component, with neither being dependent upon the other. Additionally, one of these methods MUST require a tool to remove it.

IEC-529
The requirements for finger-safe or touch-proof electrical connections are identified by the International Electrotechnical Commission (IEC) under specification 529, Classification of Degrees of Protection Provided by Enclosures. These various degrees of protection are identified and differentiated by IP ratings.

A variety of IP ratings are defined in IEC-529 ranging from IP00, which provides no protection from contact, to IP68, which identifies dust-proof and water-proof protection. Optionally, IP ratings may contain additional and supplementary designators. The IP specification which most closely approximates protection to a human finger is IP20. This IP rating would be the most common degree of touchproof connection for electrical components such as transformers.

IEC-529 protection requirements would most commonly apply to products which fall under the requirements of the Machinery Directive 89/392/EEC, as opposed to the Low Voltage Directive 73/23/EEC, which covers components such as control transformers. Over time, however, users subject to the requirements of the Machinery Directive and/or IEC-529 have expanded their interpretation of finger-safe or touch-proof electrical connections to include the components of the equipment, such as transformers.

CB Scheme

A CE mark indicates compliance to the applicable requirements of a particular product as outlined by the International Electrotechnical Commission (IEC) and by mutual agreement is recognized throughout the European Union. By itself, however, the CE mark may not necessarily be accepted as evidence of product compliance in countries outside of the European Union. Additionally, even countries within the European Union may require their own country's approval mark in addition to the CE mark. To that end, a system of mutual recognition and reciprocal acceptance has been developed which would allow product acceptance outside of the European Union and the ability to obtain the approval mark of countries within it.

The official title for this mutual acceptance agreement is The Scheme of the IECEE for Recognition of Results of Testing to Standards for Safety of Electrical Equipment (CB Scheme for short). The basis of the CB Scheme is a CB Test Certificate providing evidence that representative samples of a particular product have been tested to a particular IEC standard and successfully passed the required tests.

Each country participating in the CB Scheme, currently over 50, including East and West Europe, the Middle and Far East, and the Pacific Rim, has a representative agency, referred to as a National Certification Body, in the IECEE. Each participant has agreed that they will accept the test results of other members if such results are based on a reasonably harmonized IEC standard. Thus, by utilizing the CB Scheme, a manufacturer of product carrying a CE mark may be able to have that product accepted throughout the world, or obtain additional listing marks, with no further product testing being required.

To utilize the CB Scheme, a manufacturer must present the appropriate test reports, along with a CB Test Certificate prepared by the National Certification Body responsible for the original product listing, to the National Certification Body of the country to which the product is being supplied. At such time as the reports are accepted, the product manufacturer may place the certification mark of the country on the product without the need for additional testing.

Transformers

Primary voltage - 460/230/208V, 480/240V, 440/220/200V Secondary voltage - 115/24V (2), 120/25V, 110/23V

VA rating	Catalog number	List price	Output amps 24/115	A	B	C	D	E	mounting slots	Approx. wt. Lbs • kg
45	T4045SF1	\$ 39.00	1.90 / 0.39	31/4•83	3.76	29/16 • 65	21/4•57	21/2•64	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$3.4 \cdot 1.6$
50	T4050PSF1	45.00	$2.08 / 0.44$	31/4•83	3.76	315/16 • 100	21/4 - 57	21/2•64	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$3.4 \cdot 1.6$
75	T4075PSF1	50.00	$3.13 / 0.65$	31/2•89	33/8•86	315/16 • 100	21/2•64	213/16 • 71	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$4.8 \cdot 2.2$
100	T4100PSF1	55.00	4.17 / 0.87	35/8•92	33/4•95	41/4 - 108	21/2•64	31/8•79	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$5.9 \cdot 2.7$
150	T4150PSF1	59.00	6.25 / 1.30	43/8 • 111	33/4•95	49/16 • 116	31/4•83	31/8•79	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$7.9 \cdot 3.6$
200	T4200PSF1	70.00	8.33 / 1.74	41/2•114	41/2•114	53/16•132	3-76	33/4•95	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$10.6 \cdot 4.8$
250	T4250PSF1	78.00	10.42 / 2.17	51/4 • 133	41/2•114	53/16 •132	33/4 -95	33/4•95	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$13.9 \cdot 6.3$
300	T4300PSF1	85.00	12.50 / 2.61	$51 / 8 \cdot 130$	51/4 •133	$61 / 8 \cdot 156$	37/8•98	43/8•111	5/16 $\times 11 / 16 \cdot 8 \times 17$	15.5. 7.1
350	T4350PSF1	92.00	14.58 / 3.04	53/8 • 137	51/4 •133	$61 / 8 \cdot 156$	41/8 • 105	$43 / 8 \cdot 111$	$5 / 16 \times 11 / 16.8 \times 17$	$16.8 \cdot 7.6$
500	T4500PSF1	123.00	20.84 / 4.35	67/8•175	51/4•133	$61 / 8 \cdot 156$	51/4 •133	$43 / 8 \cdot 111$	$5 / 16 \times 11 / 16.8 \times 17$	$23.4 \cdot 10.6$

NOTE: Primary \& secondary fuse block provided as standard (except for the 45 VA unit where only the secondary fuse clip is provided.
Primary voltage - 460/230/208V, 480/240V, 440/220/200V
Secondary voltage - 115V, 120V, 110V

VA rating	Catalog number	List price	Output amps	Dimensions (inches • mm)						Approx. wt. Lbs • kg
				A	B	C	D	E	mounting slots	
750(1)	T4750PS1	\$ 145.00	6.52	73/8•187	51/4 •133	$61 / 8 \cdot 156$	53/4 •146	$43 / 8 \cdot 111$	5/16 $\times 11 / 16.8 \times 17$	$30.0 \cdot 13.6$
1000	T41K1	160.00	8.70	71/8 • 181	$63 / 8 \cdot 162$	53/8 $\cdot 137$	41/2•114	55/16 • 135	5/16 $\times 11 / 16.8 \times 17$	29.2 •13.3
1500	T41.5K1	230.00	13.04	71/2•191	$63 / 4 \cdot 171$	511/16 • 144	47/16 • 113	61/16 - 154	$9 / 32 \times 9 / 16.7 \times 14$	$33.5 \cdot 15.2$
2000	T42K1	280.00	17.39	81/4 $\cdot 210$	$63 / 4 \cdot 171$	511/16 • 144	51/4 •133	61/16 • 154	$9 / 32 \times 9 / 16.7 \times 14$	$42.5 \cdot 19.3$
3000	T43K1	395.00	26.09	89/16 • 217	9-229	71/2 191	53/4 • 147	71/2•191	$7 / 16 \times 3 / 4 \cdot 11 \times 19$	77.0 • 35.0
5000	T45K1	660.00	43.48	101/2 - 267	9-229	103/16•259	61/2•165	$61 / 2 \cdot 165$	$7 / 16 \times 3 / 4 \cdot 11 \times 19$	$102 \cdot 46.4$

Transformers

Primary voltage - 600/575/550V Secondary voltage - 120/115/110V

VA rating	Catalog number	List price	Output amps	A	$\begin{aligned} & \mathrm{Di} \\ & \mathrm{~B} \end{aligned}$	$\begin{gathered} \text { ns (in } \\ \text { C } \end{gathered}$	D	E	mounting slots	Approx. wt. Lbs • kg
45	T6045S1	\$ 41.00	0.43	3-76	3-76	29/16 • 65	2. 51	21/2•64	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$2.7 \cdot 1.2$
50	T6050PS1	47.00	0.43	3-76	3-76	315/16 • 100	$2 \cdot 51$	21/2•64	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$2.7 \cdot 1.2$
75	T6075PS1	52.00	0.65	31/2•89	3-76	315/16 • 100	21/2•64	21/2•64	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$3.6 \cdot 1.6$
100	T6100PS1	58.00	0.87	33/8•86	33/8 • 86	41/4 • 108	23/8•60	213/16 - 71	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$4.2 \cdot 1.9$
150	T6150PS1	73.00	1.30	4-102	33/4 • 95	49/16 • 116	27/8•73	31/8•79	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$6.8 \cdot 3.1$
200	T6200PS1	87.00	1.74	$4 \cdot 102$	$41 / 2 \cdot 114$	53/16 • 132	21/2•64	33/4•95	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$8.4 \cdot 3.8$
250	T6250PS1	92.00	2.17	43/8 • 111	$41 / 2 \cdot 114$	53/16 • 132	27/8•73	33/4 • 95	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$10.0 \cdot 4.6$
300	T6300PS1	102.00	2.61	43/4 • 121	$41 / 2 \cdot 114$	53/16 • 132	$31 / 4 \cdot 83$	33/4•95	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$11.3 \cdot 5.1$
350	T6350PS1	106.00	3.04	51/4 •133	$41 / 2 \cdot 114$	53/16 • 132	33/4 • 95	33/4•95	$13 / 64 \times 3 / 8 \cdot 5 \times 10$	$13.6 \cdot 6.2$
500	T6500PS1	132.00	4.35	53/8 •137	51/4 •133	61/8 • 156	41/8•105	43/8•111	$5 / 16 \times 11 / 16 \cdot 8 \times 17$	$16.8 \cdot 7.6$
750	T6750PS1	175.00	6.52	7-178	51/4 •133	61/8 • 156	53/4 •146	$43 / 8 \cdot 111$	$5 / 16 \times 11 / 16 \cdot 8 \times 17$	$25.7 \cdot 11.7$

NOTE: Primary \& secondary fuse block provided as standard (except for the 45VA unit where only the secondary fuse clip is provided.
Primary voltage - 575/460/230V
Secondary voltage - 115-95V

Top View

Side View

$\begin{aligned} & \text { VA } \\ & \text { rating } \end{aligned}$	Catalog number	List price	Output amps	A	${ }_{B}^{\mathrm{Di}}$	C	${ }^{n)}{ }_{D}$	E	mounting slots	Approx. wt. Lbs • kg
1000	T61K1	\$ 220.00	8.70	71/8•184	63/8•162	53/8•137	41/2•114	55/16•135	5/16 $\times 11 / 16.8 \times 17$	29.2 - 13.3
1500	T61.5K1	258.00	13.04	81/4•210	63/4 • 171	511/16 • 144	51/4 •133	61/16 •154	$9 / 32 \times 9 / 16.7 \times 14$	33.5-15.2
2000	T62K1	319.00	17.39	79/16 • 192	9-229	79/16 • 192	43/16 • 106	$61 / 2 \cdot 165$	$7 / 16 \times 3 / 4 \cdot 11 \times 19$	42.5 - 19.3
3000	T63K1	622.00	26.09	85/8.219	9-229	79/16 • 192	51/4 - 133	$61 / 2 \cdot 165$	$7 / 16 \times 3 / 4 \cdot 11 \times 19$	63.7-29.0
5000	T65K1	1222.00	43.48	131/2•343	9-229	103/16 • 259	81/4 $\cdot 210$	$61 / 2 \cdot 165$	$7 / 16 \times 3 / 4 \cdot 11 \times 19$	102 - 46.4

NOTE: No integral fusing capability.

Transformers with CE Mark

Primary voltage - 120/240V
Secondary voltage - 24V

Note: No integral fusing capability. Supplied with touch-safe terminal covers installed.

Transformers with CE Mark

Primary voltage - 550/575/ 600V Secondary voltage - 110/115/120V

Top View

Side View

VA rating	Catalog number	List price	Output amps	A	B	C	$\begin{array}{r} m m) \\ \mathrm{D} \end{array}$	E	Mounting slots	Approx. wt. Lbs • kg
50	TC60501	\$ 56	0.43	$3_{3 / 8} \cdot 86$	3-76	3-76	$2_{1 / 2} \cdot 64$	$2_{1 / 2} \cdot 64$	${ }_{203} \mathrm{X}_{.460} \cdot 5.1 \times 11.7$	$3.5 \cdot 1.6$
75	TC60751	63	0.65	$3_{1 / 2} \cdot 89$	$3_{3 / 8} \cdot 86$	$3_{1 / 4} \cdot 83$	$2_{1 / 2} \cdot 64$	$2_{13 / 16} \cdot 71$	${ }_{203} \mathrm{X}_{460} \cdot 5.1 \times 11.7$	$4.8 \cdot 2.2$
100	TC61001	76	0.87	$3_{5 / 8} \cdot 92$	$3_{3 / 4} \cdot 95$	$3_{1 / 2} \cdot 89$	$2_{1 / 2} \cdot 64$	$3_{1 / 8} \cdot 79$	${ }_{.203} \mathrm{X}_{460} \cdot 5.1 \times 11.7$	$5.9 \cdot 2.7$
150	TC61501	100	1.30	4-102	$4_{1 / 2}^{3 / 4} \cdot 114$	4-102	$2_{1 / 2} \cdot 64$	$3_{3 / 4} \cdot 95$	${ }_{.203} \mathrm{X}_{460} \cdot 5.1 \times 11.7$	$8.5 \cdot 3.9$
200	TC62001	113	1.74	$4_{1 / 2} \cdot 114$	$4_{1 / 2} \cdot 114$	$4 \cdot 102$	$3_{3 / 16} \cdot 81$	$3_{3 / 4} \cdot 95$	${ }_{.203} \mathrm{X}_{460} \cdot 5.1 \times 11.7$	$10.6 \cdot 4.8$
250	TC62501	124	2.17	$4_{3 / 4} \cdot 121$	$4_{1 / 2} \cdot 114$	$4 \cdot 102$	$3_{3 / 16} \cdot 81$	$3_{3 / 4} \cdot 95$	${ }_{203} \mathrm{x} .460 \cdot 5.1 \times 11.7$	$11.3 \cdot 5.1$
300	TC63001	137	2.61	$5_{1 / 4}^{3 / 4} \cdot 133$	$4_{1 / 2} \cdot 114$	$4 \cdot 102$	$3_{3 / 4} \cdot 95$	$3_{3 / 4}^{3 / 4} \cdot 95$	${ }_{203} \mathrm{X}_{.460} \cdot 5.1 \times 11.7$	$13.2 \cdot 6.0$
350	TC63501	160	3.04	5-127	$5_{1 / 4} \cdot 133$	$4_{1 / 2} \cdot 114$	$3_{3 / 4} \cdot 95$	$4_{3 / 8} \cdot 111$	${ }_{.312} \mathrm{X}_{6887} \cdot 8 \times 17.5$	$14.9 \cdot 6.8$
500	TC65001	178	4.35	6-152	$5_{1 / 4} \cdot 133$	$4_{1 / 2} \cdot 114$	$4_{3 / 4} \cdot 121$	$4_{3 / 8} \cdot 111$	${ }_{.312} \mathrm{X}_{.687} \cdot 8 \times 17.5$	$21.0 \cdot 9.5$
750	TC67501	264	6.52	$7_{3 / 8} \cdot 187$	$5_{1 / 4} \cdot 133$	$4_{1 / 2} \cdot 114$	$5_{3 / 4} \cdot 146$	$4_{3 / 8} \cdot 111$	${ }_{.312} \mathrm{X}_{6887} \cdot 8 \times 17.5$	$29.8 \cdot 13.6$

Note: No integral fusing capability. Supplied with touch-safe terminal covers installed.

Primary voltage - 380/400/415V Secondary voltage - 110/220V

Top View

Side View

VA rating	Catalog number	List price	Output amps	A		$\begin{aligned} & \text { s (in } \\ & \text { C } \end{aligned}$		E	Mounting slots	Approx. wt. Lbs•kg
50	TC305021	\$ 81	.46/.23	$3_{1 / 2} \cdot 89$	$3 \cdot 76$	3. 76	$2_{1 / 2} \cdot 64$	$2_{1 / 2} \cdot 64$	${ }_{203} \mathrm{X}_{460} \cdot 5.1 \times 11.7$	$3.5 \cdot 1.6$
75	TC307521	83	.68/.34	$3_{1 / 2} \cdot 89$	$3_{3 / 8} \cdot 86$	$3_{1 / 4} \cdot 83$	$2_{1 / 2} \cdot 64$	$2_{13 / 16} \cdot 71$	${ }_{203}{ }^{203} \mathrm{X}$. $460 \cdot 5.1 \times 11.7$	$4.8 \cdot 2.2$
100	TC310021	94	.91/.46	$3_{5 / 8} \cdot 92$	$3_{314} \cdot 95$	$3_{1 / 2} \cdot 89$	$2_{1 / 2} \cdot 64$	$3_{1 / 8} \cdot 79$	${ }_{203} \mathrm{X}_{460} \cdot 5.1 \times 11.7$	$5.9 \cdot 2.7$
150	TC315021	120	1.37/.69	4.102	$4_{1 / 2}^{3 / 4} \cdot 114$	4.102	$2_{1 / 2}^{1 / 2} \cdot 64$	$3{ }_{3 / 4} \cdot 95$	${ }_{203}^{203} \mathrm{x}_{460}{ }^{20} \cdot 5.1 \times 11.7$	8.5 - 3.9
200	TC320021	133	1.82/.91	$4_{1 / 2} \cdot 114$	$4_{1 / 2} \cdot 114$	$4 \cdot 102$	$3_{3 / 16} \cdot 81$	$3{ }_{3 / 4} \cdot 95$		$10.6 \cdot 4.8$
250	TC325021	154	2.28/1.14	$4_{3 / 4}^{1 / 2} \cdot 121$	$4_{1 / 2}^{1 / 2} \cdot 114$	$4 \cdot 102$	$3_{3 / 16} \cdot 81$	$3_{3 / 4}^{3 / 4} \cdot 95$	${ }_{203}{ }^{203} \mathrm{X}_{460} \cdot 5.1 \times 11.7$	$11.3 \cdot 5.1$
300	TC330021	178	2.72/1.36	$5_{1 / 4}^{3 / 4} \cdot 133$	$4_{1 / 2}^{1 / 2} \cdot 114$	$4 \cdot 102$	$3_{3 / 4}^{3 / 9} \cdot 95$	$3_{3 / 4}^{3 / 4} \cdot 95$	${ }_{203}^{203} \mathrm{x}_{460}{ }^{260} \cdot 5.1 \times 11.7$	13.2 •6.0
350	TC335021	193	3.18/1.59	$5_{1 / 2}^{1 / 140}$	$4_{1 / 2}^{1 / 114}$	4-102	$4_{1 / 16}^{3 / 103}$	$3_{3 / 4}^{3 / 95}$		$15.2 \cdot 6.9$
500	TC350021	210	4.55/2.27	6. 152	$5_{1 / 4}^{1 / 133}$	$4_{1 / 2} \cdot 114$	$4_{3 / 4} \cdot 121$	$4_{3 / 8} \cdot 111$	${ }_{.312} \mathrm{~K}_{687} \cdot 8 \times 17.5$	$21.0 \cdot 9.5$
750	TC375021	260	6.82/3.41	$7_{3 / 8} \cdot 187$	$5_{1 / 4} \cdot 133$	$4_{1 / 2} \cdot 114$	$5_{3 / 4} \cdot 146$	$4_{3 / 8} \cdot 111$	${ }_{.312} \mathrm{X} .687 \cdot 8 \times 17.5$	$29.8 \cdot 13.6$

Note: No integral fusing capability. Supplied with touch-safe terminal covers installed.

Transformers with CE Mark

Primary voltage - 200/220/440V, 208/230/460V, 240/480V
Secondary voltage - $23 / 110 \mathrm{~V}, 24 / 115 \mathrm{~V}, 25 / 120 \mathrm{~V}$

Top View

Side View

VA rating	Catalog number	List price	Output amps	A	B	C	D	E	Mounting slots	Approx. wt. Lbs • kg
50	TC4050F1	\$ 62	2.08/.44	$3_{1 / 4} \cdot 83$	$3_{3 / 8} \cdot 86$	$3_{1 / 4} \cdot 83$	$2_{1 / 4} \cdot 57$	$2_{13 / 16} \cdot 71$	${ }_{.203} \mathrm{x}_{.460} \cdot 5.1 \times 11.7$	$4.2 \cdot 1.6$
75	TC4075F1	70	3.13/.65	$3_{5 / 8} \cdot 92$	$3_{3 / 4}^{3 / 9} 95$	$3_{1 / 2} \cdot 89$	$2_{1 / 2}^{1 / 4} \cdot 64$	$3_{1 / 8} \cdot 79$	${ }_{.203} x_{.460} \cdot 5.1 \times 11.7$	$5.9 \cdot 2.7$
100	TC4100F1	91	4.17/.87	$4_{3 / 8}^{5 / 8} \cdot 111$	$3_{3 / 4}^{3 / 4} \cdot 95$	$3_{1 / 2} \cdot 89$	$3_{3 / 16}^{1 / 2} \cdot 81$	$3_{1 / 8} \cdot 79$	${ }_{.203} \mathrm{X}_{.460} \cdot 5.1 \times 11.7$	$7.9 \cdot 3.6$
150	TC4150F1	109	6.25/1.3	$4_{3 / 8}^{3 / 111}$	$4_{1 / 2} \cdot 114$	$4 \cdot 102$	$2_{13 / 16}^{3 / 6} \cdot 71$	$3_{3 / 4} \cdot 95$	${ }_{.203} \mathrm{x}_{.460} \cdot 5.1 \times 11.7$	$10.0 \cdot 4.6$
200	TC4200F1	127	8.33/1.74	5-127	$4_{1 / 2} \cdot 114$	$4 \cdot 102$	$3_{7 / 16} \cdot 87$	$3_{3 / 4} \cdot 95$	$.203{ }^{460} \cdot 5.1 \times 11.7$	$12.8 \cdot 5.8$
250	TC4250F1	146	10.42/2.17	$5_{1 / 2} \cdot 140$	$4_{1 / 2}^{1 / 2} \cdot 114$	$4 \cdot 102$	$4_{1 / 16} \cdot 103$	$3_{3 / 4}^{3 / 9} \cdot 95$	${ }_{203} x_{.460} \cdot 5.1 \times 11.7$	$15.2 \cdot 6.9$
300	TC4300F1	172	12.5/2.61	$5_{3 / 8} \cdot 137$	$5_{1 / 4} \cdot 133$	$4_{1 / 2} \cdot 114$	$4_{1 / 8} \cdot 105$	$4_{3 / 8} \cdot 111$	${ }_{.312} \mathrm{X}_{.687} \cdot 8 \times 17.5$	$16.8 \cdot 7.6$
350	TC4350F1	178	14.58/3.04	$5_{1 / 2} \cdot 140$	$5_{1 / 4}^{1 / 133}$	$4_{1 / 2} \cdot 114$	$4_{1 / 4} \cdot 108$	$4_{3 / 8} \cdot 111$	${ }_{.312} \mathrm{X}_{687} \cdot 8 \times 17.5$	$19.2 \cdot 8.7$
500	TC4500F1	204	20.84/4.35	$7_{1 / 4}^{1 / 2} 184$	$\overline{5}_{1 / 4} \cdot 133$	$4_{1 / 2} \cdot 114$	$6 \cdot 153$	$4_{3 / 8} \cdot 111$	${ }_{.312} \mathrm{X}_{687} \cdot 8 \times 17.5$	$27.0 \cdot 12.3$

Note: No integral fusing capability. Supplied with touch-safe terminal covers installed.

Primary voltage - 380V
12 Secondary voltage - 24 V

Top View

Side View

VA rating	Catalog number	List price	Output amps		Dimen	sions (inche	mm)	E	Mounting slots	Approx. wt. Lbs • kg
				A	B	C	D			
50	TC3050F	\$ 57	2.08	$3_{1 / 4} \cdot 83$	3-76	3-76	$2_{1 / 4} \cdot 57$	$2_{1 / 2} \cdot 64$	${ }_{.203} \mathrm{X}_{.460} \cdot 5.1 \times 11.7$	$3.5 \cdot 1.6$
75	TC3075F	64	3.13	$3_{1 / 4} \cdot 83$	$3_{3 / 8} \cdot 86$	$3_{1 / 4} \cdot 83$	$2_{1 / 4} \cdot 57$	$2_{13 / 16} \cdot 71$	${ }_{.203} \mathrm{x}_{.460} \cdot 5.1 \times 11.7$	4.2 - 1.9
100	TC3100F	76	4.17	$3_{5 / 8} \cdot 92$	$3_{3 / 4} \cdot 95$	$3_{1 / 2} \cdot 89$	$2_{1 / 2} \cdot 64$	$3_{1 / 8} \cdot 79$	${ }_{.203} \mathrm{X}_{.460} \cdot 5.1 \times 11.7$	$5.9 \cdot 2.7$
150	TC3150F	101	6.25	$4_{4 / 8} \cdot 105$	$3_{3 / 4} \cdot 95$	$3_{1 / 2} \cdot 89$	3-76	$3_{1 / 8} \cdot 79$	${ }_{.203} \mathrm{x} .460 \cdot 5.1 \times 11.7$	$7.3 \cdot 3.3$
200	TC3200F	114	8.33	$4_{1 / 4} \cdot 108$	$4_{1 / 2} \cdot 114$	4-102	$2_{13 / 16} \cdot 71$	$3_{3 / 4} \cdot 95$	$.203 \mathrm{X} .460 \cdot 5.1 \times 11.7$	$9.6 \cdot 4.4$
250	TC3250F	125	10.42	$4_{3 / 4} \cdot 121$	$4_{1 / 2} \cdot 114$	$4 \cdot 102$	$3_{3 / 16} \cdot 81$	$3_{3 / 4} \cdot 95$	$.203 \mathrm{x} .460 \cdot 5.1 \times 11.7$	$11.3 \cdot 5.1$
300	TC3300F	139	12.50	$5_{1 / 4} \cdot 130$	$4_{1 / 2} \cdot 114$	$4 \cdot 102$	$3_{3 / 4} \cdot 95$	$3_{3 / 4} \cdot 95$	${ }_{.203} \mathrm{x} .460 \cdot 5.1 \times 11.7$	13.2 • 6.0
350	TC3350F	161	14.58	5-127	$5^{1 / 4} \cdot 133$	$4_{1 / 2} \cdot 114$	$3_{3 / 4} \cdot 95$	$4_{3 / 8}^{3 / 4} \cdot 111$	${ }_{.312} \mathrm{X} .687 \cdot 8 \times 17.5$	$14.9 \cdot 6.8$
500	TC3500F	179	20.83	$5_{1 / 2} \cdot 140$	$5^{1 / 4} \cdot 133$	$4_{1 / 2} \cdot 114$	$4_{1 / 4} \cdot 108$	$4_{3 / 8} \cdot 111$	$.312 x .687 \cdot 8 \times 17.5$	$19.2 \cdot 8.7$
750	TC3750F	267	31.25	$7_{3 / 8} \cdot 187$	$5_{1 / 4}^{1 / 4} \cdot 133$	$4_{1 / 2} \cdot 114$	$5_{3 / 4} \cdot 146$	$4_{3 / 8} \cdot 111$	${ }_{.312} \mathrm{X}_{687} \cdot 8 \times 17.5$	$29.8 \cdot 13.6$

Note: No integral fusing capability. Supplied with touch-safe terminal covers installed.

Technical data Transformer terminology and FAQs

What is a transformer?

A transformer is a passive electrical device which is designed to change one voltage to another by magnetic induction.

What is an isolation transformer?

An isolation transformer, also referred to as an insulating transformer, is one where the primary and secondary windings are separate, as opposed to an autotransformer where the primary and secondary share a common winding.

What is a control transformer?

A control transformer is an isolation transformer designed to provide a high degree of secondary voltage stability (regulation) during a short period overload condition typically referred to as inrush. Control transformers are also referred to as Industrial Control Transformers, Machine Tool Transformers or Control Power Transformers (CPTs).

Can a control transformer be reversed connected?

A control transformer can be reverse connected. However, the output voltage will be less than nameplate due to the compensation factor of the windings.

Can a single phase transformer be used with a three phase source?

A single phase transformer can be used with a three phase source by connecting the primary leads to any two wires of the three phase system. The transformer output will be single phase.

Can a transformer be used at higher frequencies?

A transformer designed for $50 / 60 \mathrm{HZ}$ operation can be utilized at frequencies up to 400 HZ . However, at 400 HZ , the inrush capability will be reduced.

What is regulation?

Regulation is the change in output voltage when the load is reduced from rated value (full load) to zero (no load) with input voltage remaining constant.
Can transformers be used at ambients other than $40^{\circ} \mathrm{C}$?
Transformers may be used at ambients less than $40^{\circ} \mathrm{C}$ at full nameplate capacity. For ambients above $40^{\circ} \mathrm{C}$, they must be derated as follows:

Max. ambient temperature	Max. percent of load	
	$180^{\circ} \mathrm{C}$ Units	$105^{\circ} \mathrm{C}$ Units
$40^{\circ} \mathrm{C}$	100%	100%
$50^{\circ} \mathrm{C}$	90%	78%
$60^{\circ} \mathrm{C}$	79%	50%

What is the effect of altitude on a transformer?

A transformer may be used at full nameplate capacity up to 3300 feet (1000 meters). Above that altitude, the capacity of the transformer should be derated by 0.3% for each 300 feet of elevation above 3300 feet.

What is the effect of load on a control transformer?

A control transformer is designed to provide rated output voltage at full VA. As the load decreases, the output voltage will go up. Conversely, increases in load will result in lower output voltages. Typically, the smaller the VA size of the unit, the greater difference there is between no-load and full-load voltage.

What is temperature class?

Temperature class is the rating of the transformer insulation system. It is determined by adding the ambient temperature, temperature rise and hottest spot temperature. The standard insulation system classification per UL506, are as follows:

Ambient temperature	Average winding temperature rise	Hot spot temperature	Temperature class
$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$130^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$155^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$	$120^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$

*Measured by change-in-resistance method

What is temperature rise?

Temperature rise is the difference between the average temperature of the transformer windings and the ambient temperature.

What is hot spot?

The hot spot is an allowance selected to approximate the difference between the highest temperature inside the transformer coil and the average temperature of the transformer coil.

Is one insulation system better than another?

One insulation system is not necessarily better than another. Each will typically provide a comparable life expectancy. The choice of an insulation system depends upon application, performance and cost considerations.

Why is a control transformer needed?

A control transformer is required to supply voltage to a load which requires significantly more current when initially energized than under normal steady state operating conditions. A control transformer is designed to provide secondary voltage stability under a short period of specific overload referred to as inrush.

Are control transformers current limiting?

A control transformer is not current limiting and will allow as much current to pass through as is demanded by the load. As such, a secondary overcurrent device should be utilized.

Will a control transformer regulate output voltage?

Control transformers are not voltage regulating. Because voltage changes are a function of the transformer's turns ratio, variations in input voltage will be proportionally reflected to the output.

What is duty cycle?

Duty cycle is the period and duration when a transformer will be loaded. The transformer is designed to run continuously at full load without exceeding the temperature limits. Transformers may also be operated for short time duty. Depending upon the time and cycle of the maximum load, the transformer VA size may be smaller than for continuous duty.

What is the value of encapsulation in control transformers?
Encapsulating the coils of a control transformer will help to protect the unit from moisture, dust, dirt and industrial contaminants. Encapsulation helps provide maximum protection in hostile environments while allowing the unit to run cooler than a non-encapsulated unit.

What effect does a control transformer have on electrical

 disturbances found on the line?Because a control transformer has isolated primary and secondary windings, it will provide some degree of "clean-up" with regard to electrical noise, spikes, surges and transients. It will not, however, provide the same degree of power conditioning found in products designed for that purpose.

Technical data

UL Overcurrent protection
Primary \& secondary

Overcurrent protection on both the primary and secondary sides of transformers are specified in UL508 and the National Electrical Code. The maximum acceptable ratings are shown below. Due to the high inrush currents present when a transformer is initially energized, it is recommended that the primary fuse be time delay, to prevent nuisance trips during startup.

Maximum acceptable rating of primary overcurrent protection

Primary	VA Rating										
voltage	25	50	75	100	150	200	250	300	350	500	750
115	6/10 (1)	$\begin{gathered} \hline 1-1 / 4 \\ \text { (2) } \\ \hline \end{gathered}$	$\begin{gathered} 1-8 / 10 \\ (3-2 / 10) \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (4) \end{gathered}$	$\begin{gathered} \hline 3-1 / 2 \\ (6-1 / 4) \end{gathered}$	$\begin{gathered} \hline 5 \\ (8) \end{gathered}$	5	6-1/4	7-1/2	10	15
120	$\begin{gathered} \hline 6 / 10 \\ (1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-1 / 4 \\ \text { (2) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-8 / 10 \\ (3) \\ \hline \end{gathered}$	$2-1 / 4$ (4)	$\begin{gathered} \hline 3-1 / 2 \\ (6-1 / 4) \end{gathered}$	$\begin{gathered} \hline 5 \\ (8) \\ \hline \end{gathered}$	5	6-1/4	7	10	15
200	$\begin{gathered} 3 / 10 \\ (6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 4 \\ (1-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} 1-1 / 8 \\ (1-8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 1-1 / 2 \\ (2-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 4 \\ (3-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 2 \\ (6-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} 4-1 / 2 \\ (7-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ (8) \\ \hline \end{gathered}$	6-1/4	9
208	$\begin{gathered} 3 / 10 \\ (6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 / 10 \\ (1-1 / 8) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (1-8 / 10) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1-4 / 10 \\ & (2-1 / 4) \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ (3-1 / 2) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2-8 / 10 \\ & (4-1 / 2) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3-1 / 2 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ (8) \\ \hline \end{gathered}$	6	9
220	$\begin{aligned} & 3 / 10 \\ & (1 / 2) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 / 10 \\ (1-1 / 8) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (1-6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-1 / 4 \\ (2-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (3-2 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (4-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-2 / 10 \\ (5-6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \\ (6-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4-1 / 2 \\ (7-1 / 2) \\ \hline \end{gathered}$	5-6/10	8
230	$\begin{aligned} & 3 / 10 \\ & (1 / 2) \end{aligned}$	6/10 (1)	$\begin{gathered} 8 / 10 \\ (1-6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-1 / 4 \\ \text { (2) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-8 / 10 \\ (3-2 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (4) \\ \hline \end{gathered}$	$3-2 / 10$ (5)	$\begin{gathered} 3-1 / 2 \\ (6-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4-1 / 2 \\ (7-1 / 2) \\ \hline \end{gathered}$	5	8
240	$\begin{aligned} & 3 / 10 \\ & (1 / 2) \\ & \hline \end{aligned}$	$\begin{gathered} 6 / 10 \\ (1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 / 10 \\ (1-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-1 / 4 \\ \text { (2) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-8 / 10 \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 4 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 2 \\ (6-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \\ (7) \\ \hline \end{gathered}$	5	7-1/2
277	$\begin{gathered} 1 / 4 \\ (4 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 2 \\ (8 / 10) \end{gathered}$	$\begin{gathered} \hline 8 / 10 \\ (1-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (1-8 / 10) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1-6 / 10 \\ & (2-1 / 2) \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ (3-1 / 2) \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (4-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} 3-2 / 10 \\ (5) \end{gathered}$	$\begin{gathered} \hline 3-1 / 2 \\ (6-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ (9) \\ \hline \end{gathered}$	6-1/4
380	$\begin{gathered} 3 / 16 \\ (3 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 10 \\ (6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 2 \\ (8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 4 \\ (1-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} 1-1 / 8 \\ (1-8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 1-1 / 2 \\ (2-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} 1-8 / 10 \\ (3-2 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 4 \\ (3-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (4-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 2 \\ (6-1 / 4) \\ \hline \end{gathered}$	5-6/10 (9)
400	$\begin{gathered} 3 / 16 \\ (3 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 10 \\ (6 / 10) \end{gathered}$	$\begin{gathered} 1 / 2 \\ (8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 4 \\ (1-1 / 4) \end{gathered}$	$\begin{gathered} \hline 1-1 / 8 \\ (1-8 / 10) \end{gathered}$	$\begin{gathered} \hline 1-1 / 2 \\ (2-1 / 2) \\ \hline \end{gathered}$	$1-8 / 10$ (3)	$\begin{gathered} \hline 2-1 / 4 \\ (3-1 / 2) \\ \hline \end{gathered}$	$2-1 / 2$ (4)	$\begin{gathered} 3-1 / 2 \\ (6-1 / 4) \end{gathered}$	5-6/10 (9)
415	$\begin{aligned} & \hline 15 / 100 \\ & (3 / 10) \\ & \hline \end{aligned}$	$\begin{gathered} 3 / 10 \\ (6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 2 \\ (8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 / 10 \\ (1-1 / 8) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (1-8 / 10) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1-4 / 10 \\ & (2-1 / 4) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1-8 / 10 \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (3-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 2 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-1 / 2 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ (9) \\ \hline \end{gathered}$
440	$\begin{gathered} 15 / 100 \\ (1 / 4) \\ \hline \end{gathered}$	$\begin{aligned} & 3 / 10 \\ & (1 / 2) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1 / 2 \\ (8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 / 10 \\ (1-1 / 8) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (1-6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 1-1 / 4 \\ (2-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-6 / 10 \\ (2-8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (3-2 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 4 \\ (3-1 / 2) \end{gathered}$	$\begin{gathered} 3-2 / 10 \\ (5-6 / 10) \end{gathered}$	$\begin{gathered} \hline 5 \\ (8) \\ \hline \end{gathered}$
460	$\begin{gathered} \hline 15 / 100 \\ (1 / 4) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3 / 10 \\ & (1 / 2) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4 / 10 \\ (8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 6 / 10 \\ (1) \\ \hline \end{gathered}$	$\begin{gathered} 8 / 10 \\ (1-6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-1 / 4 \\ \text { (2) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1-6 / 10 \\ & (2-1 / 2) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1-8 / 10 \\ (3-2 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 4 \\ (3-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3-2 / 10 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4-1 / 2 \\ (8) \\ \hline \end{gathered}$
480	$\begin{gathered} 15 / 100 \\ (1 / 4) \\ \hline \end{gathered}$	$\begin{aligned} & 3 / 10 \\ & (1 / 2) \\ & \hline \end{aligned}$	$\begin{aligned} & 4 / 10 \\ & (3 / 4) \\ & \hline \end{aligned}$	6/10 (1)	$\begin{gathered} 8 / 10 \\ (1-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} 1-1 / 4 \\ (2) \\ \hline \end{gathered}$	$\begin{gathered} 1-1 / 2 \\ (2-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-8 / 10 \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (3-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 4-1 / 2 \\ (7-1 / 2) \\ \hline \end{gathered}$
550	$\begin{gathered} 1 / 8 \\ (2 / 10) \end{gathered}$	$\begin{gathered} 1 / 4 \\ (4 / 10) \end{gathered}$	$\begin{gathered} \hline 4 / 10 \\ (6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 2 \\ (8 / 10) \end{gathered}$	$\begin{gathered} \hline 8 / 10 \\ (1-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (1-8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-1 / 4 \\ (2-1 / 4) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1-6 / 10 \\ & (2-1 / 2) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1-8 / 100 \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (4-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \\ (6-1 / 4) \\ \hline \end{gathered}$
575	$\begin{gathered} 1 / 8 \\ (2 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 4 \\ (4 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 10 \\ (6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 2 \\ (8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 4 \\ (1-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (1-6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 1-1 / 4 \\ (2) \\ \hline \end{gathered}$	$\begin{gathered} 1-1 / 2 \\ (2-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} 1-8 / 10 \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 2 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 2 \\ (6-1 / 4) \\ \hline \end{gathered}$
600	$\begin{gathered} 1 / 8 \\ (2 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 2 / 10 \\ (4 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 10 \\ (6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 2 \\ (8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 4 \\ (1-1 / 4) \\ \hline \end{gathered}$	$\begin{gathered} 8 / 10 \\ (1-6 / 10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-1 / 4 \\ (2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1-1 / 2 \\ (2-1 / 2) \\ \hline \end{gathered}$	$\begin{gathered} 1-6 / 10 \\ (2-8 / 10) \\ \hline \end{gathered}$	$\begin{gathered} 2-1 / 4 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 3-1 / 2 \\ (6-1 / 4) \\ \hline \end{gathered}$

If the rated primary current is less than 2 amps , the maximum rating of the overcurrent device is 300% for power circuits, shown above, or 500% for control circuits, shown above in (brackets). If the rated primary current is 2 amps or more, the maximum rating of the overcurrent device is 250%.
All figures assume secondary overcurrent protection per UL/NEC.
Reference: NEC 430-72(c) exception \#2, 450-3(b) 1 \& 2, UL508 32.7, UL845 11.16 \& 11.17.

Maximum acceptable rating of secondary overcurrent protection

Secondary voltage	VA Rating										
	25	50	75	100	150	200	250	300	350	500	750
23	1-8/10	3-1/2	5	7	10	12	15	20	20	30	45
24	1-6/10	3-2/10	5	6-1/4	10	12	15	20	20	30	40
25	1-6/10	3-2/10	5	6-1/4	10	12	15	15	20	25	40
90	4/10	8/10	1-1/4	1-8/10	2-1/2	3-1/2	4-1/2	5	6-1/4	9	12
95	4/10	8/10	1-1/4	1-6/10	2-1/2	3-1/2	4	5	6	8	12
100	4/10	8/10	1-1/4	1-6/10	2-1/2	3-2/10	4	5	5-6/10	8	12
110	3/10	3/4	1-1/8	1-1/2	2-1/4	3	3-1/2	4-1/2	5	7-1/2	10
115	3/10	6/10	1	1-4/10	2	2-8/10	3-1/2	4	5	7	10
120	3/10	6/10	1	1-1/4	2	2-1/2	3-2/10	4	4-1/2	6-1/4	10
220	15/100	3/10	1/2	3/4	1-1/8	1-1/2	1-8/10	2-1/4	2-1/2	3-1/2	5-6/10
230	15/100	3/10	1/2	6/10	1	1-4/10	1-8/10	2	2-1/2	3-1/2	5
240	15/100	3/10	1/2	6/10	1	1-1/4	1-6/10	2	2-1/4	3-2/10	5

If the rated secondary current is less than 9 amps , the maximum rating of the overcurrent device is $167 \% ; 9 \mathrm{amps}$ or more, the maximum rating of the overcurrent device is 125%. If 125% does not correspond to a standard fuse rating, the next highest standard rating may be used. Reference: NEC 430-72(c) exception \#2, 450-3(b) 1 \& 2, UL508 32.7, UL845 11.16 \& 11.17.

Notes

[^0]: (1) Consult factory for applications with different voltages.
 (2) Whenever both secondary voltages are to be used at the same time, remove the secondary fuse clip and use a separate mounted 2 pole fuse block.

[^1]: (1) For units with class $105^{\circ} \mathrm{C}$ insulation systems

