

RQ Series PCB Relays

IDEC RQ relays are low-profile, PCB relays that provide quality within a compact package. Size equals value. RQ relays are small, yet maintain high contact ratings and long operational life. For larger power needs, a 16A model is also available.

- Low profile:
 29 x 12.7 x 15 mm
- Contact rating: 8A (DPDT) and 12A (SPDT)
- High capacity model with 16A (SPDT) contact rating
- Operational life: 100K cycles at full resistive load 10 million cycles, no load
- LED/Diode Plug-in modules available with DIN rail socket

Part Number Selection

		Part Number	
Contact	Model	Pin Terminal	Coil Voltage Code
SPDT 12A	Basic	RQ1V-CM-□	A24, A115, A230, D12, D24
SPDT 16A	HIgh Capacity (HC)	RQ1V-CH⊡	A24, A115, A230, D12, D24, D110
DPDT 8A	Basic	RQ2V-CN⊡	A24, A115, A230, D12, D24, D110

Ordering Information
When ordering, specify the Part No. and coil voltage code:

(example Q1V-CM A115

Part No. Coil Voltage Code

Coil Voltage Table

Coil Voltage Code	A24	A115	A230	D12	D24	D110
Coil Rating	24V AC	110-120V AC	220-240V A	AC 12V [DC 24V D	C 110V DC

IDEC

Sockets

Relays	Finger-safe DIN Rail Mount	PCB Mount
RQ1	SQ1V-07B [†]	SQ1V-63*
RQ2 RQ1 HC	SQ2V-07B [†]	SQ2V-63*
	A.R.	\sim

- *Comes with hold down spring
 †Comes with retaining clip and marking plate.

Replacement Parts & Accessories

Part Number	Description
SQ9Z-C	Replacement retaining clip
SQ9Z-C63	Replacement hold-down spring for SQ PCB sockets
SQ9Z-J8	8 pt jumper for DIN socket

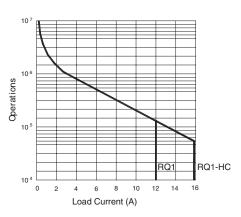
Part Number	Description
SQ9Z-LD	Diode plug in modules for DIN socket
SQ9Z-LR	RC plug-in module (110-230V AC) for DIN socket
SQ9Z-P	Replacement marking plate

Accessories

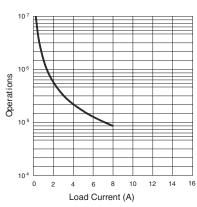
Description	Appearance	Use with	Part No.	Remarks
Aluminum DIN Rail (1 meter length)		All DIN rail sockets	BNDN1000	IDEC offers a low-profile DIN rail (BNDN1000). The BNDN1000 is designed to accommodate DIN mount sockets. Made of durable extruded aluminum, the BNDN1000 measures 0.413 (10.5mm) in height and 1.37 (35mm) in width (DIN standard). Standard length is 39" (1,000mm).
DIN Rail End Stop		DIN rail	BNL5	9.1 mm wide.

Specifications

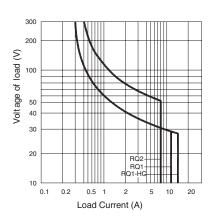
Specifications							
Mode	I (Contact)	RQ1	RQ1 HC	RQ2			
No. of poles		1	1	2			
Contact Configuration		SPDT	SPDT	DPDT			
Contact Rating		12A	16A	8A			
Contact Material		S	ilver-Nickel a	lloy			
Contact Resistance			100mΩ max	(
Operating Time			12 ms				
Release Time			8 ms				
Dielectric Strength	Between contact & coil Between contacts	5,000VAC, 1 minute 1,000VAC, 1 minute					
Vibration Resistance	Damage limits Operating extremes	10-55 Hz, amplitude 1.5mm 10-55 Hz, amplitude 1.5mm					
Shock Resistance	Damage limits Operating extremes		00m/s² min (1 00m/s² min (1	/			
Mechanical Life		10,0	000,000 opera	ations			
Electrical Life @ Full Ra	ted Load	10	0,000 operat	ions			
Operating Temperature		-40 to 85° C					
Operating Humidity		45 to 85% RH					
Dimensions (H x W x D r	nm)	29 x 12.7 x 15					
Weight (Approx.)		15g					

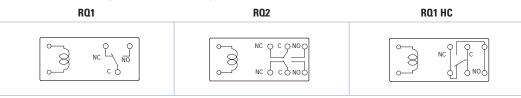

Coil Ratings

Datas	l Valtana	Nomina	l Current	Coil	Power Co	nsumption	Dialous Valtaga	Drawaut Valtaria	Max Allowable Voltage
natet	l Voltage	50HZ	60HZ	Resistance	50HZ	50HZ 60HZ Pickup Voltage		Dropout Voltage	iviax Allowable voltage
	12V	33.3mA		360Ω			80% Max	5% Min	130%
DC	24V	16.	7mA	1,440Ω	0.40W				
	110V	4.1	1mA	26,530Ω					
AC	24V	29.75mA	25.35mA	350Ω	0.71W	0.61W			
	115V	7.65mA	6.3mA	8,100Ω	0.88W	0.73W	80% Max	30% Min	130%
	230V	3.42mA	2.72mA	32,500Ω	0.79W	0.63W			

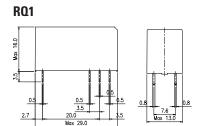

Socket Specifications

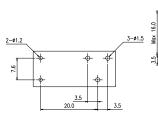
	Relays	Terminal	Electrical Rating	Wire Size	Torque
DIN Rail Sockets	SQ1V-07B	M3 screw with box clamp	300V, 12A	Maximum up to 2 - #14 AWG	1.0N•m Maximum
DIIN HAII SUCKEIS	SQ2V-07B	M3 screw with box clamp	300V, 8A	Maximum up to 2 - #14 AWG	1.0N • m Maximum
PCB Mount Socket	SQ1V-63	PCB mount	300V, 12A	_	_
	SQ2V-63	PCB mount	300V, 12A	_	_

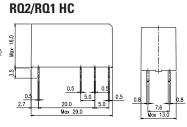

Electrical Life Curves RQ1 & RQ1 High Capacity

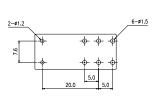

RQ2

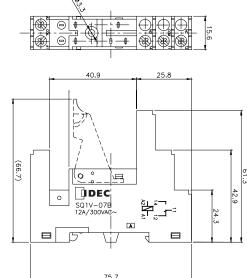
Maximum Switching Capacity R01, R01 High Capacity & R02

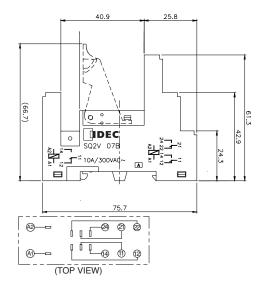



Internal Connection (View from Bottom)

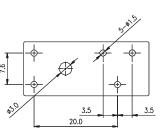


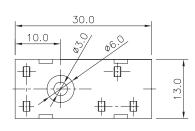

IDEC

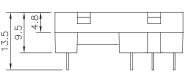



SQ Socket Domensions

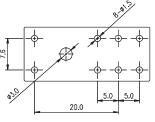
SQ1V-07B

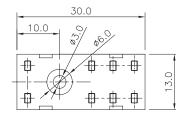

SQ2V-07B

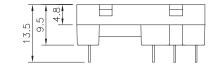



SQ1V-63 PCB Pin Layout

(TOP VIEW)

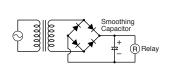


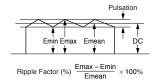

SQ1V-63



SQ2V-63 PCB Pin Layout

SQ2V-63

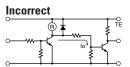


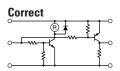

Driving Circuit for Relays

1. To ensure correct relay operation, apply rated voltage to the relay coil.

2. Input voltage for the DC coil:

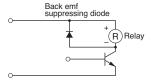
A complete DC voltage is best for the coil power to make sure of stable relay operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectification circuit, the relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.





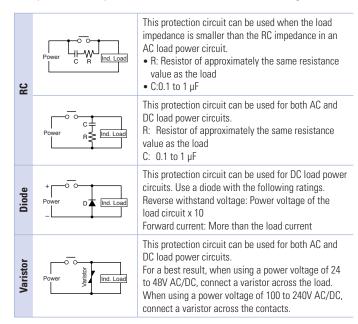
Emax = Maximum of pulsating current Emin = Minimum of pulsating current Emean = DC mean value

3. Leakage current while relay is off:

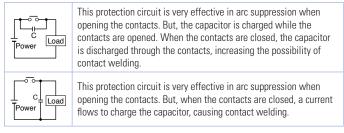

When driving an element at the same time as the relay operation, special consideration is needed for the circuit design. As shown in the incorrect circuit below, leakage current (lo) flows through the relay coil while the relay is off. Leakage current causes coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.

4. Surge suppression for transistor driving circuits:

When the relay coil is turned off, a high-voltage pulse is generated, causing a transistor to deteriorate and sometimes to break. Be sure to connect a diode to suppress the back electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.



Protection for Relay Contacts


- The contact ratings show maximum values. Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.
- 2. Contact protection circuit:

Operating Instructions

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using the actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:

3. Do not use a contact protection circuit as shown below:

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor, however, will improve the switching characteristics of a DC inductive load.

Soldering

- 1. When soldering the relay terminals, use a soldering iron of 30 to 60W, and quickly complete soldering (within approximately 3 seconds).
- 2. Use a non-corrosive rosin flux.

IDEC

Operating Instructions con't

Other Precautions

1. General notice:

To maintain the initial characteristics, do not drop or shock the relay.

The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover.

Use the relay in environments free from condensation, dust, sulfur dioxide (SO₂), and hydrogen sulfide (H₂S).

Make sure that the coil voltage does not exceed applicable coil voltage range.

- 2. UL and CSA ratings may differ from product rated values determined by IDEC.
- 3. Do not use relays in the vicinity of strong magnetic field, as this may affect relay operation.

Safety Precautions

- Turn off the power to the relay before starting installation, removal, wiring, maintenance, and inspection of the relays. Failure to turn power off may cause electrical shock or fire hazard.
- Observe specifications and rated values, otherwise electrical shock or fire hazard may be caused.
- Use wires of the proper size to meet voltage and current requirements. Tighten the terminal screws on the relay socket to the proper tightening torque.
- Surge absorbing elements on AC relays with RC or DC relays with diode are
 provided to absorb the back electromotive force generated by the coil. When
 the relay is subject to an excessive external surge voltage, the surge absorbing element may be damaged. Add another surge absorbing provision to the
 relay to prevent damage.

Precautions for the RU Relays

- Before operating the latching lever of the RU relay, turn off the power to the RU relay. After checking the circuit, return the latching lever to the original position.
- Do not use the latching lever as a switch. The durability of the latching lever is a minimum of 100 operations.
- When using DC loads on 4PDT relays, apply a positive voltage to terminals of neighboring poles and a negative voltage to the other terminals of neighboring poles to prevent the possibility of short circuits.
- DC relays with a diode have a polarity in the coil terminals. Apply the DC voltage to the correct terminals.

USA: 800-262-IDEC Canada: 888-317-IDEC

775