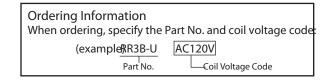
RR Series **Power Relays**

SPDT through 4PDT, 10A contacts

Midget power type relays

- · Available in pin and blade terminal styles.
- Options include an indicator, check button for test operations and side flange. •
- DIN rail, surface and panel mount sockets are available for a wide a variety of • mounting applications.

Part Number Selection


	Part Number			
Contact	Model	Pin Terminal	Blade Terminal*	Coil Voltage Code (Standard Stock Items in Bold)
SPDT	Basic		RR1BA-U	
ALL THE A	With Indicator		RR1BA-UL	
	With Check Button	—	RR1BA-UC	
	With Indicator and Check Button		RR1BA-ULC	
	Side Flange Model		RR1BA-US	
DPDT	Basic	RR2P-U	RR2BA-U	
	With Indicator	RR2P-UL	RR2BA-UL	
	With Check Button	RR2P-UC	RR2BA-UC	AC6V, AC12V, AC24V, AC110AC120V, AC220V, AC240V,
Sale Las	With Indicator and Check Button	RR2P-ULC	RR2BA-ULC	DC6V, DC12VDC24V, DC48V, DC110V
	Side Flange Model	—	RR2BA-US	
3PDT	Basic	RR3PA-U	RR3B-U	
	With Indicator	RR3PA-UL	RR3B-UL	
	With Check Button	RR3PA-UC	RR3B-UC	
	With Indicator and Check Button	RR3PA-ULC	RR3B-ULC	
11 27 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Side Flange Model	_	RR3B-US	

*Blade type not TUV tested or CE marked.

SR2P-05

SR2P-06

Standard DIN Rail Mount

Sockets

RR2P

Relays

SR2P-05C

Finger-safe DIN Rail Mount

All DIN rail mount sockets shown above can be mounted using DIN rail BNDN1000.

SR2P-51

Through Panel Mount

Switches & Pilot Lights

Hold Down Springs & Clips

	Appearance	Description	Relay	For DIN Mount Socket	For Through Panel & PCB Mount Socket	Min Order Qty	
	$\langle \rangle$	Pullover Wire Spring	RR2P	SR2B-02F1	SR3P-01F1		
			RR3PA	SR3B-02F1	3036-0161	10 pcs	
			RR1BA, RR2BA, RR3B	SR3B-02F1	SR3B-02F1	10 000	
	A B B	Leaf Spring (side latch)	rr2p, rr3pa	SFA-203	-	20 pcs	

Accessories

Description	Appearance	Use with	Part No.	Remarks
Aluminum DIN Rail (1 meter lengt	h)	All DIN rail sockets	BNDN1000	IDEC offers a low-profile DIN rail (BNDN1000). The BNDN1000 is de- signed to accommodate DIN mount sockets. Made of durable extruded aluminum, the BNDN1000 measures 0.413 (10.5mm) in height and 1.37 (35mm) in width (DIN standard). Standard length is 39" (1,000mm).
DIN Rail End Stop	A BASSING	DIN rail	BNL5	9.1 mm wide.
Replacement	0	Horseshoe clip for sockets SR3B-05, SR2P-06, SR3P-06	Y778-011	For use on DIN rail mount socket when using pullover wire hold down
Hold-Down Spring Anchor	p.	Chair clip for sockets SR2P-05(C), SR3P-05(C)		spring. 2 pieces included with each socket.

Specifications

opoomouno					
Contact Mater	Contact Material				
Contact Resist	tance ¹	30 mΩ maximum			
Minimum App	licable Load	1V DC, 10 mA			
Operate Time	2	25 ms maximum			
Release Time	2	25 ms maximum			
Power Consumption (approx.)		AC: 3 VA (50 Hz), 2.5 V DC: 1.5W	/A (60 Hz)		
Insulation Resistance		100 MΩ minimum (500	OV DC megger)		
Dielectric Strength		Between live and dea	d parts:	1500V AC, 1 minute	
	Pin Terminal	Between contact and	coil:	1500V AC, 1 minute	
	riii lerminal	Between contacts of c	lifferent poles:	1500V AC, 1 minute	
		Between contacts of t	he same pole:	1000V AC, 1 minute	
	Blade Terminal	Between live and dea	d parts:	2000V AC, 1 minute	
		Between contact and	coil:	2000V AC, 1 minute	
		Between contacts of c	lifferent poles:	2000V AC, 1 minute	
		Between contacts of t	he same pole:	1000V AC, 1 minute	
Oneveting Free		Electrical:	1800 operations,	h maximum	
Operating Free	luency	Mechanical:	18,000 operation	s/h maximum	
Vibration Resi		Damage limits:	10 to 55 Hz, amp	litude 0.5 mm	
VIDIALION RESI	stance	Operating extremes:	10 to 55 Hz, amp	litude 0.5 mm	
Shock Resista		Damage limits:	1000 m/s ² (100g))	
SHOCK KESISTA	lice	Operating extremes:	100 m/s² (10G)		
Mechanical Life		10,000,000 operations			
Electrical Life		200,000 operations (220V AC, 5A)			
Operating Tem	iperature ³	-25 to +40°C (no freezing)			
Operating Hun	nidity	5 to 85% RH (no cond	ensation)		
Weight (appro	x.) (Basic type)	RR2P: 90g, RR3PA: 96	g, RR1BA/RR2BA/RI	R3B: 82g	

- Measured using 5V DC, 1A voltage drop method
 Measured at the rated voltage (at 20°C), excluding contact bouncing
- For use under different temperature conditions, refer to Continuous Load Current vs. Operating Temperature Curve.

IDEC

RR Series

Coil Ratings

			Rated Current (mA) ±15% (at 20°C)		Coil Resistance (Ω)	Operating Characteristics (values at 20°C)				
7	Rated Vo	ltage (V)	50 Hz	60 Hz	±10% (at 20°C)	Maximum Continuous Applied Voltage	Pickup Voltage	Dropout Voltage		
		6	490	420	4.9					
		12	245	210	18					
	AC	24	121	105	79	1100/	00%	30% minimum		
	(50/60 Hz)	110	27	23	1,680	110%	80% maximum	30% 111111111111		
		120	24	20.5	2,100					
		240	12.1	10.5	8,330					
		6	24	10	25					
		12	12	20	100					
	DC	24	6	0	400	110%	110% 80%	110% 80% maximum	110% 80% maximum 10	10% minimum
		48	3	0	1,600					
		110	1:	3	8,460					

Contact Ratings

Maximum Contact Capacity					
Continuous	Allowable Co	ontact Power	Rated Load		
Current	Resistive Load	Inductive Load	Voltage (V)	Res. Load	Ind. Load
	10A 1650VA AC 1100VA AC 300W DC 150W DC		110 AC	10A	7.5A
10A		1100VA AC 150W DC	220 AC	7.5A	5A
	300W DC 150W DC		30 DC	10A	5A

Note: Inductive load for the rated load — $\cos \varphi = 0.3$, L/R = 7 ms

TÜV Ratings

Voltage240V AC30V DC

UL Ratings

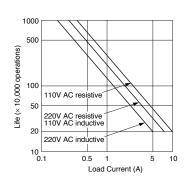
	-			
V	/oltage	Resistive	General use	Horse Power Rating
2	40V AC	10A	7A	1/3 HP
1	20V AC	10A	7.5A	1/4 HP
3	BOV DC	10A	7A	—

CSA Ratings

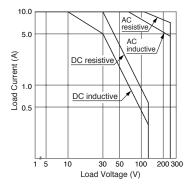
Voltage	Resistive	General use
240V AC	10A	7A
120V AC	10A	7.5A
100V DC	—	0.5A
30V DC	10A	7.5A

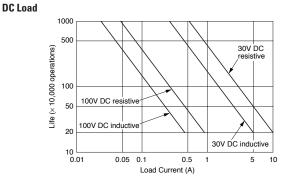
Socket	Specifications
0001101	opoonioanono

	Relays	Terminal	Electrical Rating	Wire Size	Torque
	SR2P-05	M3 screw with captive wire clamp	300V, 10A	2-12 AWG	9 - 11.5in•lbs
	SR2P-05C	M3 screw with captive wire clamp, fingersafe	300V, 10A	2-12 AWG	9 - 11.5in•lbs
	SR2P-06	M3 screw with captive wire clamp	300V, 10A	2-12 AWG	9 - 11.5in•lbs
DIN Rail Sockets	SR3P-05	M3 screw with captive wire clamp	300V, 10A	2-12 AWG	9 - 11.5in•lbs
00011010	SR3P-05C	M3 screw with captive wire clamp, fingersafe	300V, 10A	2-12 AWG	9 - 11.5in•lbs
	SR3P-06	M3 screw with captive wire clamp	300V, 10A	2-12 AWG	9 - 11.5in•lbs
	SR3B-05	M3 screw with captive wire clamp	300V, 15A (10A)* (*CSA rating)	2-12 AWG	9 - 11.5in•lbs
Through	SR2P-51	Solder	300V, 10A	—	
Panel Mount	SR3P-51	Solder	300V, 10A	—	—
Sockets	SR3B-51	Solder	300V, 10A	—	

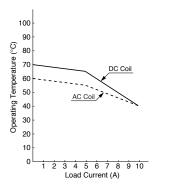

Relays & Sockets

Timers

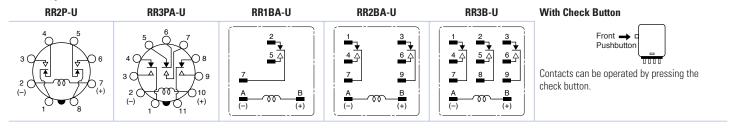

Characteristics (Reference Data)

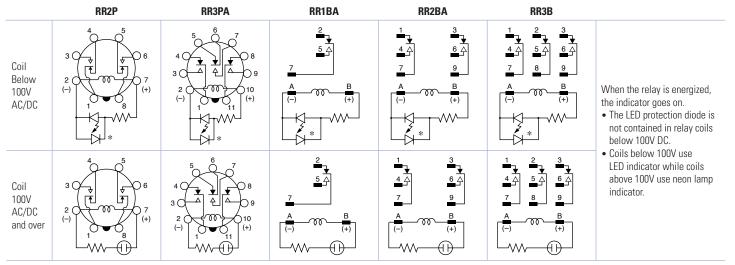

Electrical Life Curves

AC Load



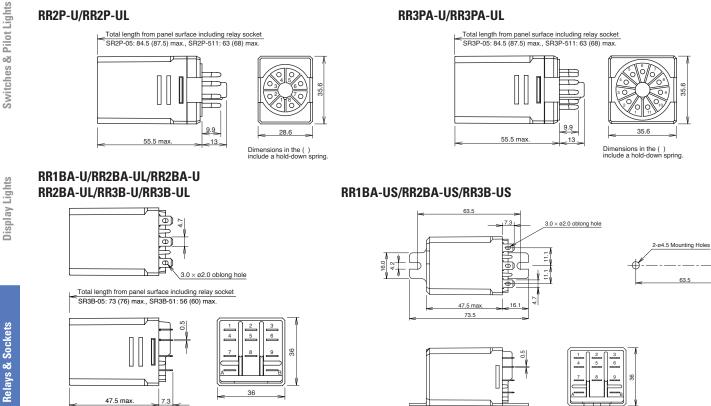
Maximum Switching Capacity




Continuous Load Current vs. Operating Temperature Curve (Basic Type, With Check Button, and Side Flange Type)

Internal Connection (View from Bottom) Basic Type

With Indicator (-UL type)



IDEC

Dimensions (mm)

RR2P-U/RR2P-UL

Terminal Arrang

(5) ā

8 ᢙ

(Top View)

Standard DIN Rail Mount Sockets

M3.5 Terminal

33

ø4.2 hole

ø4.2 hole

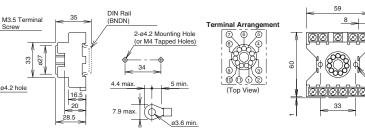
025

Timers

SR2P-05

8

52


52

29 SR3P-05

42

8

Ъř

Dimensions in the () include a hold-down spring.

2-ø4.2 Mounting Holes (or M4 Tapped Holes)

 $(\Phi \square$

5 min.

ø3.6 min.

29

4.4 max

7.9 max.

DIN Rail

(BNDN)

35

16.

20

09

SR2P-06

40

8

 $\otimes \otimes \otimes \otimes$

M3.5 Terminal

025

M3.5 Terminal

027

800

ø4.2 hole

Scre

5 min.

ø3.6 min.

2-ø4.2 Mounting Holes (or M4 Tapped Holes)

DIN Rail (BNDN)

DIN Rail

(BNDN)

33

4.9 max

7.9 max. (Φ 1

28.5

18

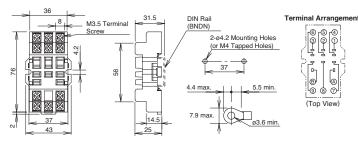
25.5

ф

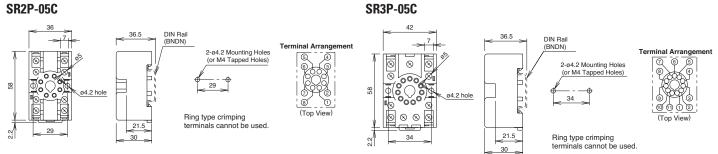
2-ø4.2 Mounting Holes (or M4 Tapped Holes) 87 6 \$ ற்ற்றி (Top View)

Terminal Arr

www.idec.com


752

Switches & Pilot Lights

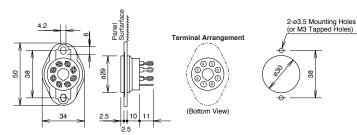

Display Lights

Standard DIN Rail Mount Sockets

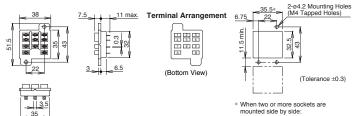
SR3B-05

Finger-safe DIN Rail Mount Sockets

SR3P-51


34

50 38 anel


2.5 10

11 2.5

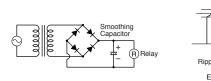
Through Panel Mount Socket SR2P-51

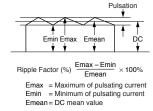
SR3B-51

* When two or more sockets are mounted side by side: L = 38 (N - 1) + 35.5 N: No. of sockets mounted

2-ø3.5 Mounting Holes (or M3 Tapped Holes) Terminal Arrangement 8

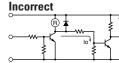
(Bottom View)

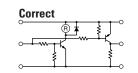

Relays & Sockets


Operating Instructions

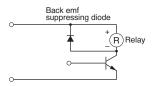
Driving Circuit for Relays

- 1. To ensure correct relay operation, apply rated voltage to the relay coil.
- 2. Input voltage for the DC coil:


A complete DC voltage is best for the coil power to make sure of stable relay operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectification circuit, the relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.



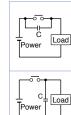
3. Leakage current while relay is off:


When driving an element at the same time as the relay operation, special consideration is needed for the circuit design. As shown in the incorrect circuit below, leakage current (lo) flows through the relay coil while the relay is off. Leakage current causes coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.

4. Surge suppression for transistor driving circuits:

When the relay coil is turned off, a high-voltage pulse is generated, causing a transistor to deteriorate and sometimes to break. Be sure to connect a diode to suppress the back electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

Protection for Relay Contacts


 The contact ratings show maximum values. Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.

2. Contact protection circuit:

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using the actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:

RC		 This protection circuit can be used when the load impedance is smaller than the RC impedance in an AC load power circuit. R: Resistor of approximately the same resistance value as the load C:0.1 to 1 µF
		This protection circuit can be used for both AC and DC load power circuits. R: Resistor of approximately the same resistance value as the load C: 0.1 to 1 µF
Diode	Power D Ind. Load	This protection circuit can be used for DC load power circuits. Use a diode with the following ratings. Reverse withstand voltage: Power voltage of the load circuit x 10 Forward current: More than the load current
Varistor	Power 2	This protection circuit can be used for both AC and DC load power circuits. For a best result, when using a power voltage of 24 to 48V AC/DC, connect a varistor across the load. When using a power voltage of 100 to 240V AC/DC, connect a varistor across the contacts.

3. Do not use a contact protection circuit as shown below:

This protection circuit is very effective in arc suppression when opening the contacts. But, the capacitor is charged while the contacts are opened. When the contacts are closed, the capacitor is discharged through the contacts, increasing the possibility of contact welding.

This protection circuit is very effective in arc suppression when opening the contacts. But, when the contacts are closed, a current flows to charge the capacitor, causing contact welding.

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor, however, will improve the switching characteristics of a DC inductive load.

Soldering

- 1. When soldering the relay terminals, use a soldering iron of 30 to 60W, and quickly complete soldering (within approximately 3 seconds).
- 2. Use a non-corrosive rosin flux.

Operating Instructions con't

IDEC

Other Precautions

1. General notice:

To maintain the initial characteristics, do not drop or shock the relay.

The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover.

Use the relay in environments free from condensation, dust, sulfur dioxide (SO_2) , and hydrogen sulfide (H_2S) .

Make sure that the coil voltage does not exceed applicable coil voltage range.

- 2. UL and CSA ratings may differ from product rated values determined by IDEC.
- 3. Do not use relays in the vicinity of strong magnetic field, as this may affect relay operation.

Safety Precautions

- Precautions for the RU Relays
 - Before operating the latching lever of the RU relay, turn off the power to the RU relay. After checking the circuit, return the latching lever to the original position.
 - Do not use the latching lever as a switch. The durability of the latching lever is a minimum of 100 operations.
 - When using DC loads on 4PDT relays, apply a positive voltage to terminals of neighboring poles and a negative voltage to the other terminals of neighboring poles to prevent the possibility of short circuits.
 - DC relays with a diode have a polarity in the coil terminals. Apply the DC voltage to the correct terminals.
- the relay socket to the proper tightening torque. on AC relays with RC or DC relays with diode are ck electromotive force generated by the coil. When processive external surrece veltage, the surge absorb
- maintenance, and inspection of the relays. Failure to turn power off may cause electrical shock or fire hazard.Observe specifications and rated values, otherwise electrical shock or fire

• Turn off the power to the relay before starting installation, removal, wiring,

- Observe specifications and rated values, otherwise electrical shock or fire hazard may be caused.
- Use wires of the proper size to meet voltage and current requirements. Tighten the terminal screws on the relay socket to the proper tightening torque.
- Surge absorbing elements on AC relays with RC or DC relays with diode are
 provided to absorb the back electromotive force generated by the coil. When
 the relay is subject to an excessive external surge voltage, the surge absorbing element may be damaged. Add another surge absorbing provision to the
 relay to prevent damage.